DOI QR코드

DOI QR Code

Quantitative Method to Measure Thermal Conductivity of One-Dimensional Nanostructures Based on Scanning Thermal Wave Microscopy

주사탐침열파현미경을 이용한 1 차원 나노구조체의 정량적 열전도도 계측기법

  • Received : 2014.02.21
  • Accepted : 2014.09.01
  • Published : 2014.12.01

Abstract

We present a method to quantitatively measure the thermal conductivity of one-dimensional nanostructures by utilizing scanning thermal wave microscopy (STWM) at a nanoscale spatial resolution. In this paper, we explain the principle for measuring the thermal diffusivity of one-dimensional nanostructures using STWM and the theoretical analysis procedure for quantifying the thermal diffusivity. The SWTM measurement method obtains the thermal conductivity by measuring the thermal diffusivity, which has only a phase lag relative to the distance corresponding to the transferred thermal wave. It is not affected by the thermal contact resistances between the heat source and nanostructure and between the nanostructure and probe. Thus, the heat flux applied to the nanostructure is accurately obtained. The proposed method provides a very simple and quantitative measurement relative to conventional measurement techniques.

본 연구에서는 나노스케일의 공간 해상도를 가지는 주사탐침열파현미경(scanning thermal wave microscopy, STWM)을 이용하여 1 차원 나노구조체의 열전도도를 정량적으로 계측하는 방법을 제시한다. 먼저, 1 차원 나노구조체의 열확산도를 계측하기 위한 STWM 의 원리를 설명한 후, 정량적인 열확산도 계측을 위한 이론적 해석 과정을 설명한다. STWM 을 이용한 본 계측기법은 열파가 이동한 거리에 따른 상대적인 위상지연만을 가지고 열확산도를 계측하여 열전도도를 구하기 때문에 탐침과 나노구조체 사이의 열접촉저항 및 나노구조체와 열원간의 열접촉저항의 영향을 받지 않으며, 나노구조체에 인가되는 정확한 열유속을 구할 필요가 없다. 따라서 기존의 측정 기법들에 비해 계측이 매우 단순하면서도 정량적인 계측이 가능하다.

Keywords

References

  1. Freitag, M., Steiner, M., Martin, Y., Perebeinos, V., Chen, Z., Tsang, J.C. and Avouris, P., 2009, "Energy Dissipation in Graphene Field-Effect Transistor," Nano Lett., Vol.9, pp. 1883-1888. https://doi.org/10.1021/nl803883h
  2. Tong, T., Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M. and Majumdar, A., "Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 30, pp. 92-100.
  3. Chen, Z.G., Han, G., Yang, L., Cheng, L. and Zou, J., 2012, "Nanostructured Thermoelectric Materials: Current Research and Future Challenge," Prog. Nat. Sci., Vol. 22, 535-549. https://doi.org/10.1016/j.pnsc.2012.11.011
  4. Kim, W.C., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A. and Majumdar, A., 2006, "Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors," Phys. Rev. Lett., Vol. 96, 045901. https://doi.org/10.1103/PhysRevLett.96.045901
  5. Rojo, M. M., Calero, O.C., Lopeandia, A. F., Rodriguez-Viejo, J. and Martin-Gonzalez, M., 2013, "Review on Measurement Techniques of Transport Properties of Nanowires," Nanoscale, Vol. 5, 11526. https://doi.org/10.1039/c3nr03242f
  6. Christofferson, J., Maize, K., Ezzahri, Y., Shabani, J., Wang, X. and Shakouri, A., 2008, "Microscale and Nanoscale Thermal Characterization Techniques," J. Electron. Packag., Vol. 130, 041101 https://doi.org/10.1115/1.2993145
  7. Zhou, J., Jin, C., Seol, J. H., Li, X. and Shi, L., 2005, "Thermoelectric Properties of Individual Electrodeposited Bismuth Telluride Nanowires," Appl. Phys. Lett., Vol. 87, 133109. https://doi.org/10.1063/1.2058217
  8. Mavrokefalos, A., Moore, A.L., Pettes, M.T., Shi, L., Wang, W. and X. Li, 2009, "Thermoelectric and Structural Characterizations of Individual Electrodeposited Bismuth Telluride Nanowires," J. Appl. Phys., Vol.105, 104318. https://doi.org/10.1063/1.3133145
  9. Ocariz, A., Sanchez-Lavega and Salazar, A., 1997, "Photothermal Study of Subsurface Cylindrical Structures.II.Experimental Results," J. Appl. Phys., Vol.81, 7561. https://doi.org/10.1063/1.365299
  10. Kwon, O., Shi, L., Majumdar, A., 2004, "Scanning Thermal Wave Microscopy," J. Heat Transf.-Trans. ASME., Vol. 125, 156.
  11. Chung, J. Kim, K., Hwang, G., Kwon, O., Lee, J., Park, S. and Choi, Y., 2010, "Nanoscale Range Finding of Subsurface Structures by Measuring the Absolute Phase Lag of Thermal Wave," Rev. Sci. Instrum., Vol. 81, 053701. https://doi.org/10.1063/1.3422245
  12. Arpaci, V.S, 1966, "Conduction Heat Transfer", pp. 324-335
  13. Rojo, M.M., Grauby, S., Rampnoux, J.M., Caballero-Calero, O., Martin-Gonzalez, M. and Dilhaire, S., 2013, "Fabrication of $Bi_2Te_3$ Nanowire Arrays and Thermal Conductivity Measurement by $3{\omega}$ Scanning Thermal Microscopy," J. Appl. Phys., Vol. 113, 054308. https://doi.org/10.1063/1.4790363
  14. Gorbachuk, N. P., Bolgar, A. S., Sidorko, V. R. and Goncharuk, L. V., 2004, "Heat Capacity and Enthalpy of $Bi_2Si_3\;and\;Bi_2Te_3$ in the Temperature Range 58-1012K", Powder Metall. Met. Ceram., Vol. 43, pp. 284-290. https://doi.org/10.1023/B:PMMC.0000042464.28118.a3
  15. Yu, C., Saha, S., Zhou, J., Shi, L., Cassell, A. M., Cruden, B. A., Ngo, Q. and Li, J., 2006, "Thermal Contact Resistance and Thermal Conductivity of A Carbon Nanofiber," J. Heat Transf.-Trans. ASME, Vol. 128, pp.234-239. https://doi.org/10.1115/1.2150833