DOI QR코드

DOI QR Code

옥상 및 벽면녹화용 지피식물의 내한성 비교

Cold Tolerance of Ground Cover Plants for Use as Green Roofs and Walls

  • 류주현 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 이효범 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 김철민 (한국도시녹화(주)) ;
  • 정현환 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 김기선 (서울대학교 농업생명과학대학 식물생산과학부)
  • Ryu, Ju Hyun (Department of Horticultural Science & Biotechnology, Seoul National University) ;
  • Lee, Hyo Beom (Department of Horticultural Science & Biotechnology, Seoul National University) ;
  • Kim, Cheol Min (Korea Urban Forestation Co., Ltd.) ;
  • Jung, Hyun Hwan (Department of Horticultural Science & Biotechnology, Seoul National University) ;
  • Kim, Ki Sun (Department of Horticultural Science & Biotechnology, Seoul National University)
  • 투고 : 2014.02.27
  • 심사 : 2014.04.29
  • 발행 : 2014.10.31

초록

본 연구는 현재 한국에서 옥상 및 벽면 녹화에 이용되고 있는 Orostachys japonica와 Sedum oryzifolium, S. kamtschaticum 'SG1', S. reflexum, S. rupestre 'Blue Spruce', S. spurium 'Green Mental', S. takesimense 등 일곱 가지 지피식물의 내한성을 비교하기 위해 진행되었다. 각 식물체의 내한성을 알아보기 위해서 10cm 포트에 심은 식물체와 정단부, 관부의 1g 단편 조직을 준비하였고, 10cm 포트 식물체는 명 상태에서, 1g 단편 조직은 암 상태에서 저온 처리를 하였다. 초겨울의 온도변화를 산정하여 처리온도는 0, -4, -8, -12, -16, $-20^{\circ}C$로 정하였고, $0^{\circ}C$부터 시간당 $2^{\circ}C$씩 낮추는 방식으로 진행되었다. 내한성 비교는 저온피해도 조사와 재생평가, 치사온도 예측값으로 시행하였다. 저온피해도 조사와 재생률은 생육 정도를 평가하는 방식으로 진행하였고, 치사온도는 전해질 용출량의 변화를 통해 예측하였다. 정단부의 치사온도 범위는 $-8.24^{\circ}C{\sim}-12.31^{\circ}C$로 산출되었고, 관부의 치사 온도 범위는 $-10.91^{\circ}C{\sim}-14.23^{\circ}C$로 산출되어 정단부보다 관부가 내한성이 더 강한 것으로 나타났다. 정단부의 내한성은 S. reflexum이 가장 높은 것으로 조사되었고, S. oryzifolium과 S. takesimense는 온도변화에 민감한 것으로 나타났다. 재생률 또한 S. reflexum이 $-20^{\circ}C$에서도 생존하여 내한성이 가장 강한 것으로 나타났고, 정단부의 내한성과는 다르게 S. oryzifolium도 $-16^{\circ}C$에서 생존하여 높은 재생률을 보였다. 늦가을이나 초겨울에 옥상 및 벽면녹화를 할 경우에는 이러한 결과들을 참고하여 식물을 선정하거나 시기를 조정하여 식재하면 안정적인 조성이 가능할 것으로 생각한다.

This study was conducted to compare the cold tolerance of seven ground cover species, Orostachys japonica, Sedum oryzifolium, S. kamtschaticum 'SG1', S. reflexum, S. rupestre 'Blue Spruce', S. spurium 'Green Mental', and S. takesimense, which have been used for green roof and wall systems in Korea. Plants were grown in 10-cm pots and 1 g of tissues at stem-end and crown of each species were kept under either light or dark condition, respectively. For cold tolerance tests, plants were initially left at $4^{\circ}C$ and linearly cooled to 0, -4, -8, -12, -16, and $-20^{\circ}C$ at $-2^{\circ}C{\cdot}h^{-1}$ rate. Low temperature injury and regrowth rates were visually evaluated and assessed by image analysis, respectively. The lethal temperature ($LT_{50}$) of plant species was determined using electrolyte leakage measurements. S. reflexum was the most cold tolerant, showing the most survival at $-16^{\circ}C$, whereas S. oryzifolium and S. takesimense showed low temperature injury at $-8^{\circ}C$. Similar results were found with electrolyte leakage measurements at the stem end. For each species, the crown (Mean $LT_{50}:\;-12.15^{\circ}C$) was more cold tolerant than the stem end (Mean $LT_{50}:\;-10.47^{\circ}C$). In conclusion, S. reflexum and S. rupestre 'Blue Spruce' are recommended for planting in the central region of Korea during late fall and early winter, as they were more cold tolerant and showed more vigorous regrowth than the other tested plant species.

키워드

참고문헌

  1. Boivin, M.A., M.P. Lamy, A. Gosselin, and B. Dansereau. 2001. Effect of artificial substrate depth on freezing injury of six herbaceous perennials grown in a green roof system. HortTechnology 11:409-411.
  2. Burr, K.E., R.W. Tinus, S.J. Wallner, and R.M. King. 1990. Comparison of three cold hardiness tests for conifer seedlings. Tree Physiol. 6:351-369. https://doi.org/10.1093/treephys/6.4.351
  3. Cardona, C.A., R.R. Duncan, and O. Lindstrom. 1997. Low temperature tolerance assessment in Paspalum. Crop Sci. 37: 1283-11291. https://doi.org/10.2135/cropsci1997.0011183X003700040043x
  4. Green Seoul Bureau. 2011. 2011 policy materials - Green roof project. Seoul Metropolitan Government, Seoul, Korea.
  5. Huh, K.Y. and K.K. Shim. 2000. Characteristics of artificial soils used alone or in a blend with field soil for the greening of artificial ground. J. Kor. Inst. Landscape Arch. 28:28-38.
  6. Huh, K.Y., I.H. Kim, and H.C. Kang. 2003a. Effects of artificial substrate type, soil depth, and drainage type on the growth of Sedum sarmentosum grown in a shallow green rooftop system. J. Kor. Inst. Landscape Arch. 31:102-112.
  7. Huh, K.Y., I.H. Kim, and N.H. Ryu. 2003b. Effects of substrate type, soil depth, and drainage type on the growth of Sedum kamtschaticum in extensive green roof systems. J. Kor. Inst. Landscape Arch. 31:90-100.
  8. Iles, J.K. and N.H. Agnew. 1995. Seasonal cold-acclimation patterns of Sedum spectabile ${\times}$ S. telephium L. 'Autumn Joy' and Sedum spectabile Boreau. 'Brilliant'. HortScience 30:1221-1224.
  9. Kim, I.H. 2006. Development of shallow-extensive green roof system for urban greening. PhD Thesis, Gyeongsang National Univ., Jinju, Korea.
  10. Kim, I.H. and K.Y. Huh. 2003. Growth characteristics of Sedum oryzifolium in extensive green roof systems. Kor. J. Hort. Sci. Technol. 21:346-352.
  11. Kim, I.H., K.Y. Huh, and M.R. Huh. 2010. Cold tolerance assessment of Sedum species for shallow-extensive green roof system. Kor. J. Hort. Sci. Technol. 28:22-30.
  12. Kingsland, S.E. 1995. Modeling nature. University of Chicago Press, Chicago, IL, USA.
  13. Lee, S.A., Y.M. Ha, and I.S. Han. 2009. A selection of Korean native Sedum spp. For evergreen ground covers of the central districts of Korea. J. Kor. Inst. Landscape Arch. 37:90-97.
  14. Lee, S.H., S.G. Yun, S.B. Back, and H.G. Park. 1991. Comparison of germination characteristics, and of logistic and eibull functions to predict cumulative germination of grasses under osmotic water stress. J. Korean Grassl. Sci. 11:209-214.
  15. Maier, F.P., N.S. Lang, and J.D. Fry. 1994. Evaluation of an electrolyte leakage technique to predict St. Augustinegrass freezing tolerance. HortScience 29:316-318.
  16. Monterusso, M.A., D.B. Rowe, and C.L. Rugh. 2005. Establishment and persistence of Sedum spp. And native taxa for green roof applications. HortScience 40:391-396.
  17. Okeyo, D.O., J.D. Fry, D. Bremer, C.B. Rajashekar, M. Kennelly, A. Chandra, D.A. Genovesi, and M.C. Engelke. 2011. Freezing tolerance and seasonal color of experimental zoysiagrasses. Crop Sci. 51:2858-2863. https://doi.org/10.2135/cropsci2011.01.0049
  18. Qian, Y.L., S. Ball, Z. Tan, A.J. Koski, and S.J. Wilhelm. 2001. Freezing tolerance of six cultivars of buffalograss. Crop Sci. 41:1174-1178. https://doi.org/10.2135/cropsci2001.4141174x
  19. Sharom, M., C. Willemot, and J.E. Thompson. 1994. Chilling injury induces lipid phase changes in membranes of tomato fruit. Plant Physiol. 105:305-308.
  20. VanWoert, N.D., D.B. Rowe, J.A. Anderson, C.L. Rugh, and L. Xiao. 2005. Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40:659-664.
  21. Von Seggern, D. 1993. Standard curves and surfaces: A mathematica notebook: User's Guide. CRC Press, Boca Raton, FL.
  22. Williams, N.S.G., R.E. Hughes, N.M. Jones, D.A. Bradbury and J.P. Rayner. 2010. The performance of native and exotic species for extensive green roofs in Melbourne, Australia. Acta Hort. 811:689-696.
  23. Zhao, H.X., H. Li, H.J. Son, and T.H. Kang. 2012. Cold tolerance assessment of ever ground-cover plants for extensive green roof system. J. Kor. Inst. Landscape Arch. 40:127-134. https://doi.org/10.9715/KILA.2012.40.4.127
  24. Korea Meteorological Administration. 2013. Monthly weather report. http://www.kma.go.kr/weather/-climate/data_monthly.jsp

피인용 문헌

  1. 저온처리에 따른 국내 상록활엽수종의 내한성 비교 평가 vol.108, pp.4, 2019, https://doi.org/10.14578/jkfs.2019.108.4.484