DOI QR코드

DOI QR Code

Evaluation of Hydrate Inhibition Performance of Water-soluble Polymers using Torque Measurement and Differential Scanning Calorimeter

토크 측정과 시차주사열량계를 이용한 수용성 고분자 화합물의 하이드레이트 저해 성능 평가

  • Shin, Kyuchul (KAIST, Division of Ocean Systems Engineering) ;
  • Park, Juwoon (KAIST, Graduate School of EEWS) ;
  • Kim, Jakyung (KAIST, Division of Ocean Systems Engineering) ;
  • Kim, Hyunho (KAIST, Division of Ocean Systems Engineering) ;
  • Lee, Yohan (UNIST, School of Urban and Environmental Engineering) ;
  • Seo, Yongwon (UNIST, School of Urban and Environmental Engineering) ;
  • Seo, Yutaek (KAIST, Division of Ocean Systems Engineering)
  • Received : 2014.04.30
  • Accepted : 2014.07.08
  • Published : 2014.12.01

Abstract

In this work, hydrate inhibition performance of water-soluble polymers including pyrrolidone, caprolactam, acrylamide types were evaluated using torque measurement and high pressure differential scanning calorimeter (HP ${\mu}$-DSC). The obtained experimental results suggest that the studied polymers represent the kinetic hydrate inhibition (KHI) performance. 0.5 wt% polyvinylcaprolactam (PVCap) solution shows the hydrate onset time of 34.4 min and subcooling temperature of 15.9 K, which is better KHI performance than that of pure water - hydrate onset time of 12.3 min and subcooling temperature of 6.0 K. 0.5 wt% polyvinylpyrrolidone (PVP) solution shows the hydrate onset time of 27.6 min and the subcooling temperature of 13.2 K while polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA) solution shows less KHI performance than PVP solution at both 0.5 and 5.0 wt%. However, PAM-co-AA solution shows slow growth rate and low hydrate amount than PVCap. In addition to hydrate onset and growth condition, torque change with time was investigated as one of KHI evaluation methods. 0.5 wt% PVCap solution shows the lowest average torque of 6.4 N cm and 0.5 wt% PAM-co-AA solution shows the average torque of 7.2 N cm. For 0.5 wt% PVP solution, it increases 11.5 N cm and 5.0 wt% PAM-co-AA solution shows the maximum average torque of 13.4 N cm, which is similar to the average torque of pure water, 15.2 N cm. Judging from the experimental results obtained by both an autoclave and a HP ${\mu}$-DSC, the PVCap solution shows the best performance among the KHIs in terms of delaying hydrate nucleation. From these results, it can be concluded that the torque change with time is useful to identify the flow ability of tested solution, and the further research on the inhibition of hydrate formation can be approached in various aspects using a HP ${\mu}$-DSC.

본 연구에서는 토크 측정과 고압 시차주사 열량계를 이용하여 pyrrolidone, caprolactam, acrylamide 계열 수용성 고분자들의 하이드레이트 저해 성능을 평가하였다. 실험 결과, 세 종류의 고분자가 모두 동역학적인 하이드레이트 생성억제제 효과를 나타내는 것으로 확인되었으며, 특히 0.5 wt% polyvinylcaprolactam (PVCap)의 경우 34.4분의 하이드레이트 유도 시간, 15.9 K의 subcooling 성능을 보이며 12.3 분, 6.0 K의 순수 물 시스템보다 월등한 저해 성능을 나타내었다. 0.5 wt% polyvinylpyrrolidone (PVP)의 경우 중간 정도의 저해 성능을 보였으며, polyacrylamide-co-acrylic acid partial sodium salt (PAM-co-AA)의 경우 각각 0.5 wt%와 5.0 wt%의 농도에서 미미한 하이드레이트 저해 성능을 보였다. 반면에 생성된 하이드레이트 입자의 성장속도와 생성 양에서는 PAM-co-AA가 PVCap과 더불어 가장 월등한 저해 효과를 나타내었다. 또 다른 주요 성능 평가 요소 중 하나인 토크 변화의 경우에는 PVCap이 평균 토크 6.4 N cm로 가장 좋은 성능을 보였으며, 0.5 wt%의 PAM-co-AA 시스템이 평균 7.2 N cm의 값으로 그 뒤를 이었다. 고압 시차주사 열량계를 이용한 수용성 고분자 물질의 저해 성능 평가 실험의 결과는 autoclave 실험의 결과와 유사하였다. PVCap을 첨가한 경우 하이드레이트가 생성되기까지의 유도시간이 가장 길어서 저해성능이 뛰어난 것을 확인하였다.

Keywords

References

  1. Sloan, E. D. and Koh, C. A. Clathrate Hydrates of Natural Gases. 3rd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL(2008).
  2. Seo, Y. T. and Lee, H., "C-13 NMR Analysis and Gas Uptake Measurements of Pure and Mixed Gas Hydrates: Development of Natural Gas Transport and Storage Method Using Gas Hydrate," Korean J. Chem. Eng., 20, 1085-1091 (2003). https://doi.org/10.1007/BF02706941
  3. Lee, H., Seo, Y., Seo, Y. T., Moudrakovski, I. L., and Ripmeester, J. A., "Recovering Methane from Solid Methane Hydrate with Carbon Dioxide," Angew. Chem. Int. Ed., 42, 5048-5051(2003). https://doi.org/10.1002/anie.200351489
  4. Sloan, E. D., Koh, C. A., and Sum, A. K., Natural Gas Hydrates in Flow Assurance, Elsevier, Amsterdam(2010).
  5. Brustad, S., Loken, K. P. and Waalmann, J. G., "Hydrate Prevention using MEG Instead of MeOH: Impact of Experience from Major Norwegian Developments on Technology Selection for Injection and Recovery of MEG," In Offshore Technology Conference, Houston, Texas, USA, May 2-5(2005).
  6. Cha, M., Shin, K., Kim, J., Chang, D., Seo, Y., Lee, H. and Kang, S. P., "Thermodynamic and Kinetic Hydrate Inhibition Performance of Aqueous Ethylene Glycol Solutions for Natural Gas," Chem. Eng. Sci., 99, 184-190(2013). https://doi.org/10.1016/j.ces.2013.05.060
  7. Joshi, S. V., Grasso, G. A., Lafond, P. G., Rao, I., Webb, E., Zerpa, L. E.,Sloan, E. D., Koh, C. A. and Sum, A. K., "Experimental Flowloop Investigations of Gas Hydrate Formation in High Water Cut Systems," Chem. Eng. Sci., 97, 198-209(2013). https://doi.org/10.1016/j.ces.2013.04.019
  8. Kelland, M. A., "History of the Development of Low Dosage Hydrate Inhibitors," Energy Fuels, 20, 825-847(2006). https://doi.org/10.1021/ef050427x
  9. Townson, I., Walker, V. K., Ripmeester, J. A. and Englezos, P., "Bacterial Inhibition of Methane Clathrate Hydrates Formed in a Stirred Autoclave," Energy Fuels, 26, 7170-7175(2012). https://doi.org/10.1021/ef301077m
  10. Kelland, M. A., Del Villano, L. and Kommedal, R., "Class of Kinetic Hydrate Inhibitors with Good Biodegradability," Energy Fuels, 22, 3143-3149(2008). https://doi.org/10.1021/ef800161z
  11. Kvamme, B., Kuznetsova, T. and Aasoldsen, K., "Molecular Dynamics Simulations for Selection of Kinetic Hydrate Inhibitors," J. Mol. Graph. Model, 23, 524-536(2005). https://doi.org/10.1016/j.jmgm.2005.04.001
  12. Anderson, B. J., Tester, J. W., Borshi, G. P. and Trout, B. L., "Properties of Inhibitors of Methane Hydrate Formation via Molecular Dynamics Simulations," J. Am. Chem. Soc., 127, 17852-17862(2005). https://doi.org/10.1021/ja0554965
  13. Moore, J. A., "Understanding Kinetic Hydrate Inhibitor and Corrosion Inhibitor Interactions," In Proceeding of the Offshore Technology Conference. Houston, TX, USA, May 4-7(2009).
  14. Daraboina, N. and Linga, P., "Experimental Investigation of the Effect of poly-N-vinyl Pyrrolidone (PV) on Methane/propane Clathrates Using a New Contact Mode," Chem. Eng. Sci., 93, 387-394(2013). https://doi.org/10.1016/j.ces.2013.02.011
  15. Yang, J. and Tohidi, B., "Characterization of Inhibition Mechanisms of Kinetic Hydrate Inhibitors using Ultrasonic Test Technique," Chem. Eng. Sci., 66, 278-283(2011). https://doi.org/10.1016/j.ces.2010.10.025
  16. Anderson, R., Mozaffar, H. and Tohidi, B., "Development of a Crystal Growth Inhibition Based Method for the Evaluation of Kinetic Hydrate Inhibitors," In Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh,Scotland, U.K., July 17-21(2011).
  17. Lee, S., Park, S., Lee, Y., Kim, Y., Lee, JD., Lee, J. and Seo, Y., "Measurements of Dissociation Enthalpy for Simple Gas Hydrates Using High Pressure Differential Scanning Calorimetry," Korean Chem. Eng. Res., 50(4), 666-671(2012). https://doi.org/10.9713/kcer.2012.50.4.666
  18. Lee, S., Lee, Y., Lee, J., Lee, H. and Seo, Y., "Experimental Verification of Methane-Carbon Dioxide Replacement in Natural Gas Hydrates Using a Differential Scanning Calorimeter," Environ. Sci. Technol., 47(22), 13184-13190(2013). https://doi.org/10.1021/es403542z
  19. Lee, Y., Lee, S., Lee, J. and Seo, Y., "Structure Identification and Dissociation Enthalpymeasurements of the $CO_2+N_2$ Hydrates for Their Application to $CO_2$ Capture and Storage," Chem. Eng. J., 246, 20-26(2014). https://doi.org/10.1016/j.cej.2014.02.045
  20. Daraboina, N., Linga, P., Ripmeester, J. A., Walker, V. K. and Englezos, P., "Natural Gas Hydrate Formation and Decomposition in the Presence of Kinetic Inhibitors. 2. Stirred Reactor Experiments," Energy Fuels, 25, 4384-4391(2011). https://doi.org/10.1021/ef200813v
  21. Ke, W., Svartaas, T. M. and Abay, H. K., "An Experimental Study on sI Hydrate Formation in Presence of Methanol, PVP and PVCap in An Isochoric Cell," In Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, U.K., July 17-21(2011).
  22. Cha, M., Shin, K., Seo, Y., Shin, J. Y. and Kang, S. P., "Catastrophic Growth of Gas Hydrates in the Presence of Kinetic Hydrate Inhibitors," J. Phys. Chem. A., 117, 13988-13995(2013). https://doi.org/10.1021/jp408346z