DOI QR코드

DOI QR Code

Part 1 : Soap-Free Emulsion Copolymerization of Styrene with COPS-I

Part 1 : Styrene과 COPS-I의 무유화공중합

  • Lee, KiChang (Department of Polymer Science and Engineering, School of Nano and Advanced Materials, Engineering Research Institute, Gyeongsang National University) ;
  • Choo, HunSeung (Department of Polymer Science and Engineering, School of Nano and Advanced Materials, Engineering Research Institute, Gyeongsang National University) ;
  • Ha, JeongMi (Department of Polymer Science and Engineering, School of Nano and Advanced Materials, Engineering Research Institute, Gyeongsang National University)
  • 이기창 (경상대학교 공과대학 나노.신소재공학부 고분자공학과) ;
  • 추헌승 (경상대학교 공과대학 나노.신소재공학부 고분자공학과) ;
  • 하정미 (경상대학교 공과대학 나노.신소재공학부 고분자공학과)
  • Received : 2014.06.23
  • Accepted : 2014.07.01
  • Published : 2014.09.30

Abstract

Monodisperse poly[styrene-co-(COPS-I)] latices in the size range of 165~550nm were successfully prepared by soap-free emulsion polymerization with various polymerization conditions (Styrene, COPS-I, KPS, DVB concentrations and polymerization temperature). In general, the COPS-I and KPS, DVB concentrations and polymerization temperature were closely related to the polymerization rate and the number of particles, molecular weight, and zeta potential. The polymerization rate and zeta potential increased, but molecular weight decreased, with increasing in the number of particles.

본 Styrene (ST)과 sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I)의 무유화 공중합을 다양한 중합조건(ST, COPS-I, KPS, DVB의 농도 및 중합온도)하에서 실시하여, 165~550 nm 입자경 범위의 단분산 라텍스를 제조하였다. 일반적으로 COPS-I와 KPS의 농도, 중합온도, DVB의 농도 등의 변화는 고분자 입자수(입자경), 중합속도, 분자량, 제타전위 등에 밀접한 영향을 미침을 발견하였다. 입자수의 증가는 중합속도와 제타전위를 증가시켰으나 분자량은 감소하였다.

Keywords

References

  1. Sanford A. Asher, Serban F. Peteu, Chad E. Reese, Ming Xiang Lin, and David Finegold, Anal. Bioanal. Chem., 373, 632 (2002). https://doi.org/10.1007/s00216-002-1366-z
  2. Vladimir L. Alexeev, Anjal C. Sharma, Alexander V. Goponenko, Sasmita Das, Igor K. Lednev, Craig S. Wilcox, David N. Finegold, and Sanford A. Asher, Anal. Chem., 75, 2316 (2003). https://doi.org/10.1021/ac030021m
  3. V. L. Alexeev, G. G. Cano, and S. A. Asher, NSTI-Nanotech., 2, 196 (2006).
  4. T. S. Shim, S. H. Kim, J. Y. Sim, J. M. Lim and S.M. Yang. Adv. Mater. 22, 4494 (2010). https://doi.org/10.1002/adma.201001227
  5. I. S. Lee, D. Y. Kim, J. H. Kal, H. Y. Baek, D. W. Kwak, D. Y. Go, E. J. Kim, C. J. Kang, J. Y. Chung, Y. L. Jang, S. W. Ji, J. H. Joo, and Y. J. Kang, Adv. Mater., 22, 4973 (2010). https://doi.org/10.1002/adma.201001954
  6. Christoph Fenzl, Stefan Wilfelm, Thomas Hirsch, and Otto S. Wolfbeis, ACS Appl. Mater. Interfaces., 5, 173 (2013). https://doi.org/10.1021/am302355g
  7. M. G. Han, C. J. Heo, C. G. Shin, H. S. Shim, J. W. Kim, Y. W. Jin, and S. Y. Lee, J. Mater. Chem., C. 1, 5791 (2013). https://doi.org/10.1039/c3tc31192a
  8. N. H. You and M. Ueda, Polymer Science and Technology, 24, 374 (2013).
  9. Chad E. Reese, Carol D. Guerrero, Jesse M. Weissman, Kangtaek Lee, and Sanford A. Asher, J. Colloid Interface Sci., 232, 76 (2000). https://doi.org/10.1006/jcis.2000.7190
  10. F. SAUZEDDE, F. GANACHAUD, A. ELAiSSARI, and C. PICHOT, J. Appl. Polym. Sci., 65, 2331 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2331::AID-APP7>3.0.CO;2-A
  11. Chad E. Reese and Sanford A. Asher, J. Colloid Interface Sci., 248, 41 (2002). https://doi.org/10.1006/jcis.2001.8193
  12. K, Seigou, I, Takaaki, M. Shunei, K. Takenori, K. Ryu, K. Moriya, and N. Katsutoshi, Kobunshi ronbunsh., 64, 62 (2007). https://doi.org/10.1295/koron.64.62
  13. S. G. Kim, Y. G Seo, Y. J. Cho, J. S. Shin, S. C. Gil, and W. M. Lee, Bull. Korean Chem. Soc., 31, 1891 (2010). https://doi.org/10.5012/bkcs.2010.31.7.1891
  14. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci., 252, 464 (1974). https://doi.org/10.1007/BF01554752
  15. Z. Song and G. W. Poehlein, J. Colloid Interface Sci., 128, 486 (1989). https://doi.org/10.1016/0021-9797(89)90364-0
  16. Z. Song, G, and W. Poehlein, J. Colloid Interface Sci., 128, 501 (1989). https://doi.org/10.1016/0021-9797(89)90365-2
  17. TANER TANRISEVER, OGUZ OKAY, and INCI CETIN SONMEZOGLU, J. Appl. Polym. Sci., 61, 485 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<485::AID-APP11>3.0.CO;2-0
  18. K.C. Lee, J. Nanosci. Nanotechnol., 13, 1 (2013). https://doi.org/10.1166/jnn.2013.6733
  19. G. W. Ceska, J. Appl. Polym. Sci., 18, 427 (1974). https://doi.org/10.1002/app.1974.070180210
  20. X. Chen, Z. C. Cui, Z. M. Chen, K. Zhang, G. Lu, G. Zhang, and B. Yang, Polymer., 43, 4147 (2002). https://doi.org/10.1016/S0032-3861(02)00262-8
  21. P. H. Wang and C.-Y. Pan, Colloid Polym Sci., 280, 152 (2002). https://doi.org/10.1007/s003960100588
  22. A. Pich, Y. Lu, and H.-J. Adler, Colloid Polym Sci., 281, 907 (2003). https://doi.org/10.1007/s00396-003-0877-2
  23. L. Jin, Z. Liu, and Q. Xu, Y. Li, J. Appl. Polym., Sci., 99, 1111 (2006). https://doi.org/10.1002/app.22168
  24. F. Ganachaud, F. Sauzedde, A. Elaissari, and C. Pichot, J. Appl. Polym. Sci., 65, 2315 (1997). https://doi.org/10.1002/(SICI)1097-4628(19970919)65:12<2315::AID-APP6>3.0.CO;2-C
  25. G. Odian, principles of polymerization, 3rd ed: John Wiley and Sons, Chapter 4, P. 319 (1991).
  26. Tao Gong and Chang Chun Wang, J. Mater Sci., 43, 1926 (2008). https://doi.org/10.1007/s10853-007-2441-9