DOI QR코드

DOI QR Code

A Study on Failures by Abnormal AlxOy Layer after PCT

PCT 후 비정상 AlxOy 층 형성에 의해 발생된 불량 연구

  • 최채형 (영남대학교 대학원 전자공학과) ;
  • 최득성 (영남이공대학교 전자정보계열) ;
  • 정승현 (영남이공대학교 전자정보계열)
  • Received : 2014.10.03
  • Accepted : 2014.10.29
  • Published : 2014.11.25

Abstract

In this paper, we have proceeded research for failures of semiconductor device stressed by Pressure Cooker Test(PCT). After PCT stress, we found various failures such as delamination between aluminium line and device layers and chemical composition transition of aluminium. We have executed the analysis using the physical and chemical observation equipments. There were the main failures that aluminium loss of aluminium pad is occurred and $Al_xO_y$($Al_2O_3$ or $Al(OH)_3$)) layer is formed abnormally. The primary cause of the failures is reaction of supplied fluorine or chlorine gases and infiltrated moisture during etching process.

본 연구에서는 반도체 소자의 Pressure Cooker Test (PCT) 실시 후 발생한 불량의 원인 규명에 대한 연구를 진행하였다. 소자의 PCT 처리 후 알루미늄 배선과 소자 층들 사이의 층간박리와 알루미늄의 화학적 구성 변화 등의 불량이 발생되었다. 다양한 물리적, 화학적 관찰 도구를 활용하여 분석 진행한 결과 알루미늄 패드에서 알루미늄의 손실이 발생하였고, $Al_xO_y$($Al_2O_3$ 또는 $Al(OH)_3$)) 층이 비정상적으로 형성됨을 관찰하였다. 알루미늄 손실과 $Al_xO_y$ 층 형성의 원인은 식각 공정 시공급되는 F, Cl 가스와 침투된 수분의 반응에 의한 것이다.

Keywords

References

  1. C. Gordon Peattie, Jim D. Adams, Samuel L. Carrell, et. all, "Elements of Semiconductor- Device Reliability", Proceedings of The IEEE, Vol.62, No.2, pp.149-169, Feb., 1974. https://doi.org/10.1109/PROC.1974.9406
  2. Tomohiro Uno, Takashi Yamada, "Improving Humidity Bond Reliability of Copper Bonding Wires", Electronic Components and Technology Conference, IEEE, pp.1725-1732, 2010.
  3. Tzu-Ying Kuo, Shu-Ming Chang, Ying-Ching Shih, et. all, "Reliability Test for a Three Dimensional Chip Stacking Structure with Through Silicon Via Connections and Low Cost", Electronic Components and Technology Conference, IEEE, pp.853-858, 2008.
  4. Inderjit Singh, J.Y. On, Lee Levine, "Enhancing Fine Pitch, High I/O Devices with Copper Ball Bonding", Electronic Components and Technology Conference, IEEE, pp.843-847, 2005.
  5. S. Alberici, D. Coulon, P. Joubin, et. all, "Surface treatment of wire bonding metal pads", Microelectronic Engineering, 70, pp.558-565, 2003. https://doi.org/10.1016/S0167-9317(03)00418-0
  6. Cheng-Fu Yu, Chi-Ming Chan, Li-Chun Chan, Ker-Chan Hsieh, "Cu wire bond microstructure analysis and failure mechanism", Microelectronics Reliability, 51, pp.119-124, 2011. https://doi.org/10.1016/j.microrel.2010.04.022
  7. Gaute Svenningsen, "Corrosion of Aluminium Alloys", Department of Materials Technology, 7491 Trondheim, Norway
  8. C.W. Tan, A.R. Daud, M.A. Yarmo, "Corrosion study at Cu-Al interface in microelectronics packaging", Applied Surface Science, 191, pp.67-73, 2002. https://doi.org/10.1016/S0169-4332(02)00150-2
  9. Y.F. Chong, R. Gopalakrishnan, C.F. Tsang, et. all, "Chemical and Morphological Studies of Plasma-Treated Intgrated Circuit Bond Pads", Journal of ELECTRONIC MATERIALS, Vol.30, No.3, pp.275-282, 2001. https://doi.org/10.1007/s11664-001-0029-8
  10. Y. S. Kim, K. Y. Lim, M. G. Sung, et all, "Low Resistive Tungsten Dual Polymetal gate Process for High Speed and High Density Memory Devices," Solid State Device Research Conference, 2007. ESSDERC 2007, 11-15, pp. 259-262, Sept., 2007.