대한지리학회지 (Journal of the Korean Geographical Society)
- 제49권5호
- /
- Pages.761-778
- /
- 2014
- /
- 1225-6633(pISSN)
상업용 토지 가격의 베이지안 추정: 주관적 사전지식과 크리깅 기법의 활용을 중심으로
A Bayesian Estimation of Price for Commercial Property: Using subjective priors and a kriging technique
- Lee, Chang Ro (Department of Geography, Seoul National University) ;
- Eum, Young Seob (Department of Geography, Seoul National University) ;
- Park, Key Ho (Department of Geography, Seoul National University, and Institute for Korean Regional Studies)
- 투고 : 2014.09.29
- 심사 : 2014.10.24
- 발행 : 2014.10.30
초록
본 논문은 거래빈도가 낮아 지금껏 적극적으로 시도되지 못한 상업용 토지의 가격을 정확히 추정하고자 하였다. 서울시 상업용 토지 실거래가 자료를 대상으로 선형 결합 형태의 평균 구조(전역적 경향), 지수 형태의 공분산함수 그리고 순수 오차항을 구성요소로 하는 모형을 구축 및 적용하였다. 상권별로 가격수준이 차별적으로 형성되는 상업용 토지 가격의 특성을 감안하여 대표적 공간보간기법인 크리깅 방법을 적용함으로써 지가의 공간적 상관성을 명시적으로 고려하였다. 더 나아가 희소한 자료의 한계를 극복하기 위해 전문가 지식을 사전 확률분포의 형태로 모형에 반영할 수 있는 베이지안 크리깅 방법을 활용하였다. 적용한 모형의 성능은 적합 과정에 사용되지 않은 검증 자료를 대상으로 검토하였으며, 전문가 지식의 반영과 공간적 상관성의 명시적 고려를 통해 가격 추정의 정확성이 높아진 사실을 확인하였다. 본 논문은 베이지안 크리깅 기법을 토지 가격 추정에 적용하되, 전문가의 주관적 지식을 명시적으로 모형에 반영하였다는 점 등에서 기존 연구와 차별성을 갖는다. 본 논문의 결과는 거래 자료가 희소한 상황에서도 신뢰성 있게 부동산 가격을 추정해야하는 경우에 유용하게 활용될 수 있을 것으로 기대된다.
There has been relatively little study to model price for commercial property because of its low transaction volume in the market. Despite of this thin market character, this paper tried to estimate prices for commercial lots as accurate as possible. We constructed a model whose components consist of mean structure(global trend), exponential covariance function and a pure error term, and applied it to actual sales price data of Seoul. We explicitly took account of spatial autocorrelation of land price by utilizing a kriging technique, a representative method of spatial interpolation, because the land price of commercial lots has feature of differential price forming pattern depending on submarkets they belong to. In addition, we chose to apply a bayesian kriging to overcome data scarcity by incorporating experts' knowledge into prior probability distribution. The chosen model's excellent performance was verified by the result from validation data. We confirmed that the excellence of the model is attributed to incorporating both autocorexperts' knowledge and spatial autocorrelation in the model construction. This paper is differentiated from previous studies in the sense that it applied the bayesian kriging technique to estimate price for commercial lots and explicitly combined experts' knowledge with data. It is expected that the result of this paper would provide a useful guide for the circumstances under which property price has to be estimated reliably based on sparse transaction data.
키워드