DOI QR코드

DOI QR Code

Separation of $H_2$ and $N_2$ Gases by PTMSP-NaY Zeolite Composite Membranes

PTMSP-NaY Zeolite 복합막에 의한 수소-질소 기체 분리에 관한 연구

  • Kim, Ok-Su (Department of Chemistry, Sang Myung University) ;
  • Hong, Se Ryeong (College of General Studies, Sang Myung University)
  • Received : 2014.07.31
  • Accepted : 2014.08.12
  • Published : 2014.08.30

Abstract

The PTMSP[Poly(1-trimethylsilyl-1-propyne)]-NaY zeolite composite membranes were prepared by adding 0~50 wt% NaY zeolite to PTMSP. In order to investigate the characteristics of these membranes, we used the analytical methods such as FT-IR, $^1H$-NMR, GPC, DSC, TGA, and SEM. Gas permeation experiments were carried out at $23{\sim}26^{\circ}C$, $2kgf/cm^2$, and the permselectivity of $H_2$ and $N_2$ gases through the composite membranes was studied as a function of the NaY zeolite contents. According to TGA measurements, when NaY zeolite was inserted within the PTMSP, thermal stability of PTMSP was enhanced. Based on SEM observation, NaY zeolite was dispersed in the PTMSP-NaY zeolite composite membrane with a size of $1.5{\mu}m$. The permeability of $H_2$ and $N_2$ through the PTMSP-NaY zeolite composite membranes increased as NaY zeolite content increased. On the contrary, the selectivity($H_2/N_2$) of the PTMSP-NaY zeolite composite membranes decreased as zeolite content increased.

PTMSP[Poly(1-trimethylsilyl-1-propyne)]-NaY zeolite 복합막이 PTMSP에 0~50 wt% NaY zeolite를 첨가하여 제조되었다. 이 막들의 특성을 FT-IR, $^1H$-NMR, GPC, DSC, TGA, SEM에 의해서 조사하였다. 기체투과 실험은 $23{\sim}26^{\circ}C$, $2kgf/cm^2$에서 행하였고, 복합막에 대한 수소와 질소의 투과선택성은 NaY zeolite 함량에 따라 조사하였다. TGA 측정에 의하면 PTMSP에 NaY zeolite가 첨가되었을 때 PTMSP의 열적 안정성은 향상되었다. SEM 관찰에 의하면 NaY zeolite는 PTMSP-NaY zeolite 복합막 내에 약 $1.5{\mu}m$ 크기로 분산되어 있었다. PTMSP-NaY zeolite 복합막에 대한 $N_2$$H_2$의 투과도는 NaY zeolite 함량이 증가하면 증가하였다. 그리고 PTMSP-NaY zeolite 복합막의 $N_2$에 대한 $H_2$의 선택성은 NaY zeolite 함량이 증가하면 감소하였다.

Keywords

References

  1. K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, "Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends", J. Membr. Sci., 251, 101 (2005). https://doi.org/10.1016/j.memsci.2004.10.041
  2. T. C. Merkel, V. Bondar, K. Nagai, and B. D. Freeman, "Sorption and Transport of Hydrocarbon and Perfluorocarbon Gases in Poly(1-trimethylsilyl-1-propyne)", J. Polymer Sci.: Part B: Polymer Physics, 38, 273 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000115)38:2<273::AID-POLB1>3.0.CO;2-X
  3. L. C. Witchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, "Sorption and transport of organic vapors in poly[1-(trimethylsilyl)-1-propyne]", J. Membr. Sci., 48, 321 (1990). https://doi.org/10.1016/0376-7388(90)85013-B
  4. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, "Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures", J. Membr. Sci., 191, 85 (2001). https://doi.org/10.1016/S0376-7388(01)00452-5
  5. T. M. Madkour, "Development of the molecular design rules of ultra-permeable poly[1-(trimethylsilyl)-1-propyne] membranes", Polymer, 41, 7489 (2000). https://doi.org/10.1016/S0032-3861(00)00083-5
  6. A. Volkov, A. Yushkin, A. Grekhov, A. Shutova, S. Bazhenov, S. Tsarkov, V. Khotimskya, T. J. H. Vlugt, and V. Volkov, "Liquid permeation through PTMSP: One polymer for two different membrane applications" J. Membr. Sci., 440, 98 (2013). https://doi.org/10.1016/j.memsci.2013.03.067
  7. I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 116, 199 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  8. K. Nagai, A. Higuchi, and T. Nakagawa, "Bromination and Gas Permeability of Poly(1-trimethylsilyl-1-propyne) Membrane", J. Appl. Polym. Sci., 54, 1207 (1994). https://doi.org/10.1002/app.1994.070540903
  9. L. Starannikova, V. Khodzhaeva, and Y. Yampolskii, "Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability", J. Membr. Sci., 244, 183 (2004). https://doi.org/10.1016/j.memsci.2004.06.051
  10. T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, "Physical modification of poly [1-(trimethylsilyl)-1-propyne] membranes for gas separation", J. Membr. Sci., 94, 183 (1994). https://doi.org/10.1016/0376-7388(93)E0169-K
  11. Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, "Chemical Modification of Poly(substituted-acetylene). I. Synthesis and Gas Permeability of Poly(1-trimethylsilyl-1-propyne)/Poly(dimethylsiloxane) Graft Copolymer", J. Polymer Sci.: Part B: Polymer Physics, 29, 171 (1991). https://doi.org/10.1002/polb.1991.090290204
  12. M. Jia, K. V. Peinemann, and R. D. Behling, "Molecular sieving effect of the zeolite-filled silicone rubber membranes in gas separation", J. Membr. Sci., 133, 231 (1991).
  13. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, and S. H. Hyun, "Separation of $CO_2$ and $N_2$ with a NaY zeolite membrane under various permeation test conditions", Korea Membrane J., 8(1), 21 (2006).
  14. M. J. Kim and K. H. Youm, "Preparation of zeolite-filled PDMS membranes and it's properties for organic vapor separtion", Korea Membrane J., 2(1), 48 (2000).
  15. I. Yum, M. Yun, and Y. Lee, "Pervaporation characteristics of ion-exchanged NaA type zeolite membranes", Membrane Journal, 19(3), 189 (2009).
  16. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, "Mixed matrix membranes of pebax-1657 loaded with 4A zeolite for gaseous separations", Sep. Purif. Technol., 129, 1 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  17. H. Sun, L. Lu, X. Chen, and Z. Jiang, "Surface-modified zeolite-filled chitosan membranes for pervaporation dehydration of ethanol", Appl. Surf. Sci., 254, 5367 (2008). https://doi.org/10.1016/j.apsusc.2008.02.056
  18. Y. Shen and A. C. Lua, "Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler(fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation", Chem. Eng. J., 192, 201 (2012). https://doi.org/10.1016/j.cej.2012.03.066
  19. S. L. Hong and T. B. Kang, "Separation of gas based on PTMSP-silica-PEI composites", Membrane Journal, 16(2), 123 (2006).
  20. T. B. Kang, H. K. Lee, and S. H. Cho, "Separation of $H_2-N_2$ gas mixture by PTMSP-PEI and PDMS-PEI composite membranes", Membrane Journal, 13(4), 291 (2003).
  21. T. Masuda, E. Isobe, and T. Higashimura, "Polymerization of 1-(trimethylsilyl)-1-propyne by halides of niobium (V) and tantalum (V) and polymer properties", Macromolecules, 18, 841 (1985). https://doi.org/10.1021/ma00147a003
  22. C. Maxwell, "Treatise on Electricity and Magnetism", Oxford University Press, London (1873).
  23. R. M. Barrer, J. A. Barrie, and M. G. Rogers, "Heterogeneous membranes: diffusion in filled rubber", J. Polym., Sci., Part A, 1, 2565 (1963).
  24. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  25. S. W. Hwang, Y. C. Chung, B. C. Chun, and S. J. Lee, "Gas permeability of polyethylene films containing zeolite powder", Polymer(Korea), 28(5), 374 (2004).