DOI QR코드

DOI QR Code

흰쥐 부신 크로마핀 세포 칼슘통로 조절에 미치는 ATP의 효과

Effect of ATP on Calcium Channel Modulation in Rat Adrenal Chromaffin Cells

  • 김경아 (충북대학교 의과대학 의공학교실) ;
  • 구용숙 (충북대학교 의과대학 생리학교실)
  • Kim, Kyung Ah (Department of Biomedical Engineering, Chungbuk National University School of Medicine) ;
  • Goo, Yong Sook (Department of Physiology, Chungbuk National University School of Medicine)
  • 투고 : 2014.08.25
  • 심사 : 2014.09.11
  • 발행 : 2014.09.30

초록

뉴론에서 ATP는 분비 과립내에 신경전달물질과 함께 다량 저장되어 있다가 신경전달물질과 함께 분비되는 것으로 알려져 있으므로 신경전달물질의 자극-분비(stimulus-secretion) coupling 과정에 있어 중요한 조절작용을 할 것으로 기대된다. 그러므로 본 연구에서는 뉴론과 그 발생학적 기원이 동일한 부신수질 세포(adrenal chromaffin cell)를 대상으로 하여 세포막 칼슘통로를 통한 세포막 전류에 미치는 ATP의 영향을 측정함으로써 신경전달물질이 자극-분비 coupling 과정에 작용하는 ATP의 조절 작용을 알아보고자 하였다. 부신수질 세포의 칼슘통로를 통한 세포막 전류는 패치클램프 테크닉으로 기록하였다. 10 mM $Ba^{2+}$을 포함한 세포 외 용액에서, $Ba^{2+}$ current는 0.1 mM ATP를 세포외부에 처치했을 때, 평균 $36{\pm}6%$ (n=6) 감소되어 나타났고 ATP를 씻어준 후 전류는 다시 회복되는 가역적 반응을 보였다. ATP의 전류 억제 기전을 알아보고자 칼슘통로에서 관찰되는 현상 중의 하나인 소통(facilitation)현상을 기록하였다. +80 mV의 큰 prepulse를 준 후 바로 테스트 펄스를 주며 측정한 전류는 큰 prepulse에 의해 억제효과가 풀리는(disinhibition) 현상을 나타내었다. ATP 처치 후 큰 자극을 주어 $37{\pm}5%$ (n=11)의 $Ba^{2+}$ 전류 증가가 있었고 이는 ATP가 없는 상태에서 순수하게 큰 자극에 의해 소통되는 $25{\pm}3%$ (n=12)과 유의한 차이를 보였다(p<0.05). ATP의 억제 기전이 G-protein을 매개로 한 것인지를 알아보고자 가수분해 되지 않는 GTP 유도체인 $GTP{\gamma}S$를 세포 내에 준 후 $Ba^{2+}$ 전류를 기록하였다. $GTP{\gamma}S$에 의해 55%의 전류 크기의 감소가 있었고 이 환경에서 큰 prepulse를 인가하였을 때 $34{\pm}4%$ (n=19)의 소통현상을 보였다. 이는 $GTP{\gamma}S$가 없는 환경에서의 $25{\pm}3%$ (n=12)의 소통현상을 보인 것과 유의한 차이를 보였다(p<0.05). $Ba^{2+}$ current trace의 활성화 과정(activation)을 curve-fitting한 결과, control은 single exponential curve로 fitting된 반면, ATP 또는 $GTP{\gamma}S$를 처치한 경우, 그리고 ATP와 $GTP{\gamma}S$ 모두 처치한 경우에서는 double-exponential curve로 가장 잘 fitting이 되었다. 즉, ATP나 $GTP{\gamma}S$를 처치했을 때 모두 전류가 더 느리게 활성화되는 모양을 나타내었고, 이상의 결과로 미루어 ATP와 $GTP{\gamma}S$는 같은 방식으로 칼슘통로를 억제하고, 이러한 억제효과는 세포막에 아주 큰 전압을 걸어주면 칼슘 통로에 결합했던 G-protein이 막전압 의존적으로 떨어짐으로써 소실(disinhibition)된다고 해석된다. 본 연구에서 확인한 ATP의 칼슘통로 억제효과는 자체 크로마핀 세포 또는 주변 세포에서 아드레날린이 적게 분비되게 하는 autocrine 또는 paracrine inhibition 과정의 중요한 기전으로 작용할 것이다.

ATP in quantity co-stored with neurotransmitters in the secretory vesicles of neurons, by being co-released with the neurotransmitters, takes an important role to modulate the stimulus-secretion response of neurotransmitters. Here, in this study, the modulatory effect of ATP was studied in $Ca^{2+}$ channels of cultured rat adrenal chromaffin cells to investigate the physiological role of ATP in neurons. The $Ca^{2+}$ channel current was recorded in a whole-cell patch clamp configuration, which was modulated by ATP. In 10 mM $Ba^{2+}$ bath solution, ATP treatment (0.1 mM) decreased the $Ba^{2+}$ current by an average of $36{\pm}6%$ (n=8), showing a dose-dependency within the range of $10^{-4}{\sim}10^{-1}mM$. The current was recovered by ATP washout, demonstrating its reversible pattern. This current blockade effect of ATP was disinhibited by a large prepulse up to +80 mV, since the $Ba^{2+}$ current increment was larger when treated with ATP ($37{\pm}5%$, n=11) compared to the control ($25{\pm}3%$, n=12, without ATP). The $Ba^{2+}$ current was recorded with $GTP{\gamma}S$, the non-hydrolyzable GTP analogue, to determine if the blocking effect of ATP was mediated by G-protein. The $Ba^{2+}$ current decreased down to 45% of control with $GTP{\gamma}S$. With a large prepulse (+80 mV), the current increment was $34{\pm}4%$ (n=19), which $25{\pm}3%$ (n=12) under control condition (without $GTP{\gamma}S$). The $Ba^{2+}$ current waveform was well fitted to a single-exponential curve for the control, while a double-exponential curve best fitted the current signal with ATP or $GTP{\gamma}S$. In other words, a slow activation component appeared with ATP or $GTP{\gamma}S$, which suggested that both ATP and $GTP{\gamma}S$ caused slower activation of $Ca^{2+}$ channels via the same mechanism. The results suggest that ATP may block the $Ca^{2+}$ channels by G-protein and this $Ca^{2+}$ channel blocking effect of ATP is important in autocrine (or paracrine) inhibition of adrenaline secretion in chromaffin cell.

키워드

참고문헌

  1. Augustine GJ, Neher E: Calcium requirments for secretion in bovine chromaffin cells. J Physiol 450:247-271 (1992) https://doi.org/10.1113/jphysiol.1992.sp019126
  2. Boarder MR, Marriot D, Adams M: Stimulus secretion coupling in cultured chromaffin cells. Biochem Pharm 56(1):163-167 (1987)
  3. Albillos A, Artalejo AR, Lopez MG, Gandia L, Garcia AG, Carbone E: Calcium channel subtypes in cat chromaffin cells. J Physiol 477:197-213 (1994) https://doi.org/10.1113/jphysiol.1994.sp020184
  4. Zimmermann H: Signalling via ATP in the nervous system. Trends Neurosci 17:420-426 (1994) https://doi.org/10.1016/0166-2236(94)90016-7
  5. Dunlap K, Fischbach GD: Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurons. J Physiol 317:519-535 (1981) https://doi.org/10.1113/jphysiol.1981.sp013841
  6. Forscher P, Oxford GS: Modulation of calcium channels by norepinephrine in internally dialyzed avian sensory neurons. J Gen Physiol 85:743-763 (1985) https://doi.org/10.1085/jgp.85.5.743
  7. Galvan M and Adams PR: Control of calcium current in rat sympathetic neurons by norepinephrine. Brain Res 244:135-144 (1982) https://doi.org/10.1016/0006-8993(82)90911-8
  8. Dolphin AC and Scott RH: Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurons: modulation by guanine nucleotides. J Physiol 386:1-17 (1987)
  9. Grassi F and Lux HD: Voltage-dependent GABA-induced modulation of calcium currents in chick sensory neurons. Neurosci Lett 1015:113-119 (1989)
  10. Menon-Johansson AS, Berrow N, Dolphin AC: G(o) transduces GABAB-receptor modulation by N-type calcium channels in cultured dorsal root ganglion neurons. Pflugers Arch 425:335-343 (1993) https://doi.org/10.1007/BF00374184
  11. Harkins AB and Fox AP: Activation of purinergic receptors by ATP inhibits secretion in bovine adrenal chromaffin cells. Brain Res 885:231-239 (2000) https://doi.org/10.1016/S0006-8993(00)02952-8
  12. Carbone E, Carabelli V, Casetti T, Baldelli P, Hernandez- Guijo JM, Giusta L: G-protein and cAMP-dependent Lchannel gating mechanism: a manifold system to control calcium entry in neurosecretory cells. Pflugers Arch 442(6):801-813 (2001) https://doi.org/10.1007/s004240100607
  13. Diverse-Pierluissi M, Dunlap K, Westhead EW: Multiple actions of extracellular ATP on calcium currents in cultured bovine chromaffin cells. Proc Nat Acad Sci USA 88:1261-1265 (1991) https://doi.org/10.1073/pnas.88.4.1261
  14. Holz GG IV, Rane SG, Dunlap K: GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319:670-672 (1986) https://doi.org/10.1038/319670a0
  15. Kajikawa Y, Saitoh N, Takahashi T: GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABA(B) receptor. Proc Nat Acad Sci USA 98: 8054-8058 (2001) https://doi.org/10.1073/pnas.141031298
  16. Akaike A, Mine Y, Sasa M, Takaori S: Voltage and current clamp studies of M- and Nicotinic excitation of the rat chromaffin cells. J Pharmacol Exp Ther 255:333-339 (1990)
  17. Hamil OP, Marty A, Neher E, Sakmann B, Sigworth FJ: Improved patch-clamp techniques for high resolution current recording from cells and cell free membrane patches. Pflugers Arch 391:85-100 (1981) https://doi.org/10.1007/BF00656997
  18. Marchetti C, Robello M: Guanosine-5'-O-(3-thiotriphosphate) modifies kinetics of voltage-dependent calcium current in chick sensory neurons. Biophys J 56:1267-1272 (1989) https://doi.org/10.1016/S0006-3495(89)82774-2
  19. Artalejo CR, Rossie S, Perlman RL, Fox AP: Voltage dependent phosphorylation may recruit $Ca^{2+}$ current facilitation in chromaffin cells. Nature 358:63-66 (1992) https://doi.org/10.1038/358063a0
  20. Dolphin AC: Facilitation of $Ca^{2+}$ current in excitable cells. Trends Neurosci 19(1):35-43 (1996) https://doi.org/10.1016/0166-2236(96)81865-0
  21. R. Eckert and J.E. Chad: Inactivation of calcium channels: Prog. Biophysi. Mol. Biol., 44:215-267 (1984) https://doi.org/10.1016/0079-6107(84)90009-9
  22. Powell AD, Teschemacher AG, Seward EP: P2Y purinoceptors inhibit exocytosis in adrenal chromaffin cells via modulation of voltage-operated calcium channels. J Neurosci 20(2): 606-616 (2000)
  23. Dubyak GR, el-Moatassim C: Signal transduction via P2- purinergic receptors for extracellular ATP and other nucleotides. Am J Physiol 265:C577-606 (1993)
  24. Carabelli V, Hernandez-Guijo JM, Baldelli P, Carbone E: Direct autocrine inhibition and cAMP-dependent potentiation of single L-type $Ca^{2+}$ channels in bovine chromaffin cells. J Physiol 532(Pt 1):73-90 (2001) https://doi.org/10.1111/j.1469-7793.2001.0073g.x