• 제목/요약/키워드: $Ca^{2+}$ channel

검색결과 585건 처리시간 0.033초

생쥐 난자의 활성화에 따른 $Ca^{2+}$-channel의 분포 변화에 관한 연구 (Studies of Changes of $Ca^{2+}$-channel Distribution in the Activated Mouse Ova)

  • 장연수;배인하
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제28권1호
    • /
    • pp.13-24
    • /
    • 2001
  • Objective: In muscle and neuronal cells, calcium channels have been classified by electrophysiological and pharmacological properties into (1) voltage-dependent $Ca^{2+}$-channel (1) P/Q-type $Ca^{2+}$-channel (2) N-type $Ca^{2+}$-channel (3) L-type $Ca^{2+}$-channel (4) T-type $Ca^{2+}$-channel (5) R-type $Ca^{2+}$-channel. The present study was done in order to investigate whether there is any difference in $Ca^{2+}$-channel distribution between activated and normally fertilized embryos. Methods: The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in parthenogenetically activated 2-cell embryos by ethanol and $SrCl_2$ treatment. These 2-cell embryos were obtained by exposure to 6% ethanol for 6 min and to 10 mM $SrCl_2$ for 2h. Results: P/Q-type $Ca^{2+}$-channels and L-type $Ca^{2+}$-channels have been identified. Whereas, three type of $Ca^{2+}$-channel P/Q-type, N-type, L-type have been identified in 2-cell embryos fertilized in vivo. Conclusion: Activation by ethanol was faster than those by $SrCl_2$. However, there was difference in DAB staining of the embryos between ethanol and $SrCl_2$ treatment (87.7% and 54.1 %). Intensity of staining was also different between ethanol- and $SrCl_2$-treated group. However, it has not been known why there was some difference in DAB staining and staining intensity in the present study.

  • PDF

Identification of Three Types of Voltage Dependent $Ca^{2+}$-Channels in Mouse Follicular Oocytes

  • Bae, In-Ha;Yoon, Sook-Young;Yoon, Yong-Dal;Kim, Moon-Kyoo;Kim, Hae-Kwon
    • Animal cells and systems
    • /
    • 제3권1호
    • /
    • pp.53-58
    • /
    • 1999
  • The immunocytochemical method was used to identify the existence of voltage-dependent $Ca^{2+}$-channels in mouse follicular oocytes. Three types of voltage-dependent $Ca^{2+}$-channels were shown to exist in the follicular oocytes for the first time, the P/Q-type $Ca^{2+}$-channel, the N-type $Ca^{2+}$-channel, and the L-type $Ca^{2+}$-channel. Among proven $Ca^{2+}$-channels distributions of the P/Q-type $Ca^{2+}$-channel and L-type $Ca^{2+}$-channel showed localized staining (clustered pattern) on the oolemma. The distribution of the P/Q-type $Ca^{2+}$-channel showed all localized staining, and the range of localized staining was from 1 to 8 in staining intensity. As the staining intensity increased from 1 to 8, the number of localized staining decreased. The L-type $Ca^{2+}$-channel are homogeneously stained (29.4%-54.2%), while some of them (around 28.7%-44.1%) showed localized staining on the oolemma. However, the rest of them showed no staining at all (17.1%- 26.5%). On the contrary, the N-type $Ca^{2+}$-channel showed mostly homogeneous staining, while nonstaining oocytes were around 33.8%. The rest showed localized staining (10%). However, staining intensity was much weaker than those of the P/Q-type and L-type $Ca^{2+}$-channel. In fact, the N-type $Ca^{2+}$-channel has been known to exist only in neurons (from ectoderm origin), but it is unknown how the N-type $Ca^{2+}$-channel exists in the follicular oocytes (from mesoderm origin). Further studies are needed to examine the expression of $Ca^{2+}$-channels during the developmental stages of the oocytes.

  • PDF

The Role of Intracellular $Mg^{2+}$ in Regulation of $Ca^{2+}-activated$ $K^+$ Channel in Pulmonary Arterial Smooth Muscle Cells of the Rabbit

  • Lee, Suk-Ho;Park, Myoung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.611-616
    • /
    • 1998
  • Although the $Ca^{2+}-activated\;K^+\;(I_{K,Ca})$ channel is known to play an important role in the maintenance of resting membrane potential, the regulation of the channel in physiological condition is not completely understood in vascular myocytes. In this study, we investigated the role of cytoplasmic $Mg^{2+}$ on the regulation of $I_{K,Ca}$ channel in pulmonary arterial myocytes of the rabbit using the inside-out patch clamp technique. $Mg^{2+}$ increased open probability (Po), but decreased the magnitude of single channel current. $Mg^{2+}-induced$ block of unitary current showed strong voltage dependence but increase of Po by $Mg^{2+}$ was not dependent on the membrane potential. The apparent effect of $Mg^{2+}$ might, thus, depend on the proportion between opposite effects on the Po and on the conductance of $I_{K,Ca}$ channel. In low concentration of cytoplasmic $Ca^{2+},\;Mg^{2+}$ increased $I_{K,Ca}$ by mainly enhancement of Po. However, at very high concentration of cytoplasmic $Ca^{2+},$ such as pCa 5.5, $Mg^{2+}$ decreased $I_{K,Ca}$ through the inhibition of unitary current. Moreover, $Mg^{2+}$ could activate the channel even in the absence of $Ca^{2+}.\;Mg^{2+}$ might, therefore, partly contribute to the opening of $I_{K,Ca}$ channel in resting membrane potential. This phenomenon might explain why $I_{K,Ca}$ contributes to the resting membrane potential where membrane potential and concentration of free $Ca^{2+}$ are very low.

  • PDF

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

[$Ca^{2+}$ Signalling in Endothelial Cells: Role of Ion Channels

  • Nilius, Bernd;Viana, Felix;Kamouchi, Masahiro;Fasolato, Cristina;Eggermont, Jan;Droogmans, Guy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권2호
    • /
    • pp.133-145
    • /
    • 1998
  • $Ca^{2+}-signals$ in endothelial cells are determined by release from intracellular stores and entry through the plasma membrane. In this review, the nature of $Ca^{2+}$ entry and mechanisms of its control are reviewed. The following ion channels play a pivotal role in regulation of the driving force for $Ca^{2+}$ entry: an inwardly rectifying $K^+$ channel, identified as Kir2.1, a big-conductance, $Ca^{2+}-activated$ $K^+$ channel (hslo) and at least two $Cl^-$ channels (a volume regulated $Cl^-$ channel, VRAC, and a $Ca^{2+}$ activated $Cl^-$ channel, CaCC). At least two different types of $Ca^{2+}$-entry channels exist: 1. A typical CRAC-like, highly selective $Ca^{2+}$ channel is described. Current density for this $Ca^{2+}$ entry is approximately 0.1pA/pF at 0 mV and thus 10 times smaller than in Jurkat or mast cells. 2. Another entry pathway for $Ca^{2+}$ entry is a more non-selective channel, which might be regulated by intracellular $Ca^{2+}$. Although detected in endothelial cells, the functional role of trp1,3,4 as possible channel proteins is unclear. Expression of trp3 in macrovascular endothelial cells from bovine pulmonary artery induced non-selective cation channels which are probably not store operated or failed to induce any current. Several features as well as a characterisation of $Ca^{2+}$-oscillations in endothelial cells is also presented.

  • PDF

탈분극과 근장그물 내 $Ca^{2+}$ 고갈-유도 평활근의 수축 및 세포 내 $Ca^{2+}$ 변동에 관여하는 L-형 $Ca^{2+}$ 통로의 상관성 (The Relationship of the L-type $Ca^{2+}$ Channel on the Depolarization-and Depletion of SR $Ca^{2+}$ -induced Smooth Muscle Contraction and Intracellular $Ca^{2+}$ Mobilization)

  • 김중환
    • The Journal of Korean Physical Therapy
    • /
    • 제19권5호
    • /
    • pp.65-76
    • /
    • 2007
  • Purpose: It is generally accepted that smooth muscle contraction is triggered by intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) released from intracellular $Ca^{2+}$ stores such as sarcoplasmic teticulum (SR) and from the extracellular space. The increased $[Ca^{2+}]^i$ can phosphorylate the 20,000 dalton myosin light chain $(MLC_{20})$ by activating MLC kinase (MLCK), and this initiates smooth muscle contraction. In addition to the $[Ca^{2+}]_i$MACK-tension pathway, a number of intracellular signal molecules, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC) and others, play important roles in the regulation of smooth muscle contraction. However, the mechanisms regulating contraction of depletion of SR $Ca^{2+}$ in mouse gastric smooth muscle strips is not still clear. Methods: To investigate the rotes of $Ca^{2+}$ influx and SR $Ca^{2+}$ release channel on gastric motility, isometric contraction and $[Ca^{2+}]_i$ were examined in mouse gastric smooth muscle strips. Results: High KCl, ryanodine, an activator of $Ca^{2+-}$induced $Ca^{2+}$ release channel, and cyclopiazonic acid (CPA), an inhibitor of SR $Ca^{2+-}$ATPase evoked a sustained increase in muscle contraction and $[Ca^{2+}]_i$. These increases induced by high KCl, ryanodine, and CPA were partially blocked by application of verapamil ($10{\mu}M$), a L-type $Ca^{2+}$ channel inhibitor. Additionally, in $Ca^{2+-}$free solution (1 mM EGTA), ryanodine and CPA had no effect contraction and $[Ca^{2+}]_i$ in fundic muscle strips. Conclusion: These results that extracellular $Ca^{2+}$ influx and depletion of SR trigger $Ca^{2+}$ influx through verapamil-sensitive $Ca^{2+}$ channel, and extracellular and SR $Ca^{2+}$ store may functionally involve in the subcellular $Ca^{2+}$ mobilization in mouse gastric muscle.

  • PDF

Bile Acid Inhibition of N-type Calcium Channel Currents from Sympathetic Ganglion Neurons

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa;Cho, Eui-Sic
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권1호
    • /
    • pp.25-30
    • /
    • 2012
  • Under some pathological conditions as bile flow obstruction or liver diseases with the enterohepatic circulation being disrupted, regurgitation of bile acids into the systemic circulation occurs and the plasma level of bile acids increases. Bile acids in circulation may affect the nervous system. We examined this possibility by studying the effects of bile acids on gating of neuronal (N)-type $Ca^{2+}$ channel that is essential for neurotransmitter release at synapses of the peripheral and central nervous system. N-type $Ca^{2+}$ channel currents were recorded from bullfrog sympathetic neuron under a cell-attached mode using 100 mM $Ba^{2+}$ as a charge carrier. Cholic acid (CA, $10^{-6}M$) that is relatively hydrophilic thus less cytotoxic was included in the pipette solution. CA suppressed the open probability of N-type $Ca^{2+}$ channel, which appeared to be due to an increase in (no activity) sweeps. For example, the proportion of sweep in the presence of CA was ~40% at +40 mV as compared with ~8% in the control recorded without CA. Other single channel properties including slope conductance, single channel current amplitude, open and shut times were not significantly affected by CA being present. The results suggest that CA could modulate N-type $Ca^{2+}$ channel gating at a concentration as low as $10^{-6}M$. Bile acids have been shown to activate nonselective cation conductance and depolarize the cell membrane. Under pathological conditions with increased circulating bile acids, CA suppression of N-type $Ca^{2+}$ channel function may be beneficial against overexcitation of the synapses.

근 소포체 Ryanodine Receptor-$Ca^{2+}$Release Channel Complex Protein에 미치는 인삼 성분의 영향 (Effect of Ginseng Components on Ryanodine Receptor-$Ca^{2+}$ Release Channel Complex Protein in Sarcoplasmlc Reticulum of Skeletal Muscle)

  • 이희봉;한병돈;권상옥
    • Journal of Ginseng Research
    • /
    • 제20권3호
    • /
    • pp.274-283
    • /
    • 1996
  • In this study, the effects of red ginseng components [ginsenosides (total saponins and $Rg_1$) on the function of ryanodine receptor (RyR) -$Ca^{2+}$ release channel complex protein (named as RyR or $Ca^{2+}$ channel), a membrane protein in sarcoplasmic reticulum (SR) of rabbit skeletal muscle were examined at the SR vesicle's level and the molecular levels with Chaps-solubilized and purified $Ca^{2+}$ channel protein and with reconstituted proteoliposomes by dialysis. The results were as follows. 1. The binding of ryanodine known as inhibitor of muscle contraction to the RyR was decreased at the whole range of concentration ($10^2$~$10^7$%) by these two ginseng components. In heavy SR vesicles, Chaps-solubilized and purified $Ca^{2+}$ channel protein, and reconstituted vesicles, its maximal inhibition by total saponins was shown at the concentration of $10^3$, $10^3$%, and $10^5$% respectively, and by gin- senoside $Rg_1}$) each was $10^3$%, $10^3$%, and $10^4$%. 2. The release of $Ca^{2+}$ ion through $Ca^{2+}$ channel in heavy SR vesicles and reconstituted proteoliposomes was increased as a whole by these two ginseng components, and particularly maximal release by both of them was shown at the range of $10^4$~$10^6$%. These results were seemed to be caused by conformational change of $Ca^{2+}$ release channel protein (RyR) by red ginseng components [ginsenosides (total saponins and $Rg_1}$).

  • PDF

Low-Voltage Activated $Ca^{2+}$ Current Carried via T-Type Channels in the Mouse Egg

  • Yang, Young-Sun;Park, Young-Geun;Cho, Soo-Wan;Cheong, Seung-Jin;Haan, Jae-Hee;Park, Choon-Ok;Hong, Seong-Geun
    • The Korean Journal of Physiology
    • /
    • 제27권1호
    • /
    • pp.107-114
    • /
    • 1993
  • Most of voltage operated $Ca^{2+}$ channels can be divided into three types (T-, N-, and L-type), according to the electrical and pharmacological properties. Their distribution is closely related to cell specific functions. Properties of the voltage activated $Ca^{2+}$ current in mouse eggs were examined to classify channel types and to deduce the function by using whole cell voltage clamp technique. $Ca^{2+}$ currents appeared below -40 mV and reached a maximum at -15 mV (half maximum was -31 mV), then decayed rapidly (inactivation time constant ${\tau}=28.2{\pm}9.59$ ms at -10 mV within 50 ms after the onset of step depolarization. Activation and inactivation of the $Ca^{2+}$ channel was steeply dependent on voltage, in a relatively low range of $-70\;mV{\sim}-10 mV,$ half maximum of activation was -31 mV and that of inactivation was -39 mV, respectively. This current was not decreased significantly by nifedipine, a specific dihydropyridine $Ca^{2+}$ channel blocker in the range of $1\;{\mu}M\;to\;100{\mu}M.$ The inhibitory effect of $Ni^{2+}\;on\;Ca^{2+}$ current was greater than that of $Cd^{2+}.$ The conductance of $Ba^{2+}$ through the channel was equal to or lower than that of $Ca^{2+}$ These results implied that $Ca^{2+}$ current activated at a lower voltage in the mouse egg is carried via a $Ca^{2+}$ channel with similar properties that of the T-type channel.

  • PDF

Voltage Dependent N Type Calcium Channel in Mouse Egg Fertilization

  • Eum, Jin Hee;Park, Miseon;Yoon, Jung Ah;Yoon, Sook Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제24권4호
    • /
    • pp.297-306
    • /
    • 2020
  • Repetitive changes in the intracellular calcium concentration ([Ca2+]i) triggers egg activation, including cortical granule exocytosis, resumption of second meiosis, block to polyspermy, and initiating embryonic development. [Ca2+]i oscillations that continue for several hours, are required for the early events of egg activation and possibly connected to further development to the blastocyst stage. The sources of Ca2+ ion elevation during [Ca2+]i oscillations are Ca2+ release from endoplasmic reticulum through inositol 1,4,5 tri-phosphate receptor and Ca2+ ion influx through Ca2+ channel on the plasma membrane. Ca2+ channels have been characterized into voltage-dependent Ca2+ channels (VDCCs), ligand-gated Ca2+ channel, and leak-channel. VDCCs expressed on muscle cell or neuron is specified into L, T, N, P, Q, and R type VDCs by their activation threshold or their sensitivity to peptide toxins isolated from cone snails and spiders. The present study was aimed to investigate the localization pattern of N and P/Q type voltage-dependent calcium channels in mouse eggs and the role in fertilization. [Ca2+]i oscillation was observed in a Ca2+ contained medium with sperm factor or adenophostin A injection but disappeared in Ca2+ free medium. Ca2+ influx was decreased by Lat A. N-VDCC specific inhibitor, ω-Conotoxin CVIIA induced abnormal [Ca2+]i oscillation profiles in SrCl2 treatment. N or P/Q type VDC were distributed on the plasma membrane in cortical cluster form, not in the cytoplasm. Ca2+ influx is essential for [Ca2+]i oscillation during mammalian fertilization. This Ca2+ influx might be controlled through the N or P/Q type VDCCs. Abnormal VDCCs expression of eggs could be tested in fertilization failure or low fertilization eggs in subfertility women.