DOI QR코드

DOI QR Code

On the Geometric Anisotropy Inherent In Spatial Data

공간자료의 기하학적 비등방성 연구

  • Go, Hye Ji (Department of Statistics, Sungshin Women's University) ;
  • Park, Man Sik (Department of Statistics, Sungshin Women's University)
  • 고혜지 (성신여자대학교 통계학과) ;
  • 박만식 (성신여자대학교 통계학과)
  • Received : 2014.08.08
  • Accepted : 2014.09.29
  • Published : 2014.10.31

Abstract

Isotropy is one of the main assumptions for the ease of spatial prediction (named kriging) based on some covariance models. A lack of isotropy (or anisotropy) in a spatial process necessitates that some additional parameters (angle and ratio) for anisotropic covariance model be obtained in order to produce a more reliable prediction. In this paper, we propose a new class of geometrically extended anisotropic covariance models expressed as a weighted average of some geometrically anisotropic models. The maximum likelihood estimation method is taken into account to estimate the parameters of our interest. We evaluate the performances of our proposal and compare it with an isotropic covariance model and a geometrically anisotropic model in simulation studies. We also employ extended geometric anisotropy to the analysis of real data.

등방성(isotropy)은 공분산 모형(covariance model)에 기반으로 공간 예측(spatial prediction)이라 불리우는 크리깅(kriging) 을 용이하게 수행하기 위한 주요 가정 중의 하나로 알려져있다. 공간 과정에서 등방성이 충족되지 않는 경우에는, 보다 신뢰성 예측을 생성하기 위해 비등방성 공분산 모형(covariance model)과 관련된 모수들(각도 및 비율)를 추정해야 한다. 본 논문에서는 여러 방향의 기하학적 비등방성 모형(geometrically anisotropic covariance models)의 가중 평균으로 표현되는 확장된 형태의 기하학적 비등방성(geometrically extended anisotropic) 공분산모형을 제안한다. 연구에 관심이 되는 모수를 추정하기 위해 최대우도추정법(maximum likelihood estimation method)을 이용하였다. 제안한 모형의 성능을 평가하기 위해 등방성 공분산모형과 기하학적 비등방성 모형을 고려한 모의실험을 수행하였다. 또한 확장된 기하학적 비등방성 모형을 적용한 미세먼지 농도자료 분석을 실시하였다.

Keywords

References

  1. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, In: B. N. PETROV and F. CSAKI, eds, Second International Symposium on Information Theory, Budapest: Akademiai Kiado, 267-281.
  2. Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction, Technometrics, 16, 125-127. https://doi.org/10.1080/00401706.1974.10489157
  3. Banerjee, S., Gelfand, A. E. and Carlin, B. P. (2004). Hierarchical Modeling and Analysis for Spatial Data, Boca Raton: Chapman & Hall/CRC.
  4. Budrikaite, L. and Ducinskas, K. (2005). Modeling of geometric anisotropic spatial variation, Journal of Mathematical Modeling and Analysis, 361-366.
  5. Choi, J. W. and Kim, H. W. (2006). Application of geo-statistical analysis method to detect the direction of sea surface warm flows, Journal of the Korean Association of Geographic Information Studies, 9, 168-178.
  6. Choi, J. and Park, M. S. (2013). On the hierarchical modeling of spatial measurements from different station networks, The Korean Journal of Applied Statistics, 26, 294-305.
  7. Choi, J., Park, M. S., Won, Y. B., Kim, H. Y. and Heo, T. Y. (2010). Analysis of total crime count data based on spatial association structure, The Korean Journal of Applied Statistics, 23, 335-344. https://doi.org/10.5351/KJAS.2010.23.2.335
  8. Choi, J. H. and Um, J. S. (2012). Comparative evaluation for seasonal CO2 flows tracked by GOSAT in Northeast Asia, Journal of Korea Spatial Information Society, 20, 1-13.
  9. Cressie, N. A. C. (1993). Statistics for Spatial Data, New York: John Wiley & Sons.
  10. Go, H. J. (2014). On the anisotropy inherent in spatial data, master's thesis, Sungshin Women's University.
  11. Haning, R. P. (2003). Spatial Data Analysis, Cambridge: Cambridge University Press.
  12. Hurvich, C. M. and Tsai, C. L. (1989). Regression and time series model selection in small samples, Biometrika, 76, 297-307. https://doi.org/10.1093/biomet/76.2.297
  13. Jeong, S. H., Park, M. S. and Kim, K. W. (2010). Spatial prediction of wind speed data, The Korean Journal of Applied Statistics, 23, 345-356. https://doi.org/10.5351/KJAS.2010.23.2.345
  14. Jung, J., Jin, S. and Park, M. S. (2008). Precipitation analysis based on spatial linear regression model, The Korean Journal of Applied Statistics, 21, 1093-1107. https://doi.org/10.5351/KJAS.2008.21.6.1093
  15. Kang, C. W., Choi, S. B. and Yoo, S. H. (2008). A spatial bootstrap method for kriging variance, Journal of the Korean data analysis society, 10, 1247-1254
  16. Kim, B. (2005). Selection of variogram considering spatial correlation, master's thesis, Sungkyunkwan University.
  17. Kim, H. Y. (2010). A geo-statistical approach for improved prediction of traffic volume in urban area, Journal of the Korean Association of Geographic Information Studies, 13, 138-147.
  18. Kim, K. K. and Choi, S. B. (2000). A study on the prediction of geo-statistical methods using environmental data, Journal of the Korean Data Analysis Society, 2, 499-510.
  19. Kruminiene, I. (2006). Analysis of anisotropic variogram models for prediction of the curonian lagoon data, journal of mathematical modelling and analysis, 11, 73-86.
  20. Kubota, T. and Tarumi, T. (2010). Simulation studies of geometric anisotropy detection methods for geostatistical data, Journal of the Japanese Society of Computational Statistics, 25, 13-24.
  21. Lahiri, S. N. (2003). Resampling Methods for Dependent Data, Springer.
  22. Liansheng, T., William, R. S., Wayne, A. W. and Richard, F. G. (2006). A parametric spatial bootstrap,Southern Methodist University.
  23. Lin, K. P., Long, Z. H. and Ou, B. (2010). The size and power of bootstrap tests for spatial dependence in a linear regression model, Computational Economics, 38, 153-171.
  24. Loh, J. M. and Stein, M. L. (2004). Bootstrapping a spatial point process, Statistica Sinica, 14, 69-101.
  25. Park, M., Park, C., Shin, K. I. and Yoo, C (2010). On proper variograms of daily rainfall data, Journal of the Korean Society of Civil Engineers, 30, 525-532.
  26. Park, M. S., Eom, J. and Heo, T. Y. (2013). The spatial correlation of mode choice behavior based on smart card transit data in Seoul, The Korean Journal of Applied Statistics, 26, 623-634. https://doi.org/10.5351/KJAS.2013.26.4.623
  27. Park, N. W. (2011). Time-series mapping and uncertainty modeling of environmental variables: a case study of PM10 concentration mapping, Journal of the Korean earth science society, 32, 249-264. https://doi.org/10.5467/JKESS.2011.32.3.249
  28. Schwarz, G. (1978). Estimating the dimension of a model, The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
  29. Shin, K. I., Back, K. J. and Park, J. M. (2003). A study on the selection of variogram using spatial correlation, The Korean Journal of Applied Statistics, 10, 835-844. https://doi.org/10.5351/CKSS.2003.10.3.835