• Title/Summary/Keyword: spherical covariance model

Search Result 5, Processing Time 0.022 seconds

An Adaptive Optimization Algorithm Based on Kriging Interpolation with Spherical Model and its Application to Optimal Design of Switched Reluctance Motor

  • Xia, Bin;Ren, Ziyan;Zhang, Yanli;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1544-1550
    • /
    • 2014
  • In this paper, an adaptive optimization strategy utilizing Kriging model and genetic algorithm is proposed for the optimal design of electromagnetic devices. The ordinary Kriging assisted by the spherical covariance model is used to construct surrogate models. In order to improve the computational efficiency, the adaptive uniform sampling strategy is applied to generate sampling points in design space. Through several iterations and gradual refinement process, the global optimal point can be found by genetic algorithm. The proposed algorithm is validated by application to the optimal design of a switched reluctance motor, where the stator pole face and shape of pole shoe attached to the lateral face of the rotor pole are optimized to reduce the torque ripple.

On the Geometric Anisotropy Inherent In Spatial Data (공간자료의 기하학적 비등방성 연구)

  • Go, Hye Ji;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.755-771
    • /
    • 2014
  • Isotropy is one of the main assumptions for the ease of spatial prediction (named kriging) based on some covariance models. A lack of isotropy (or anisotropy) in a spatial process necessitates that some additional parameters (angle and ratio) for anisotropic covariance model be obtained in order to produce a more reliable prediction. In this paper, we propose a new class of geometrically extended anisotropic covariance models expressed as a weighted average of some geometrically anisotropic models. The maximum likelihood estimation method is taken into account to estimate the parameters of our interest. We evaluate the performances of our proposal and compare it with an isotropic covariance model and a geometrically anisotropic model in simulation studies. We also employ extended geometric anisotropy to the analysis of real data.

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis (Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할)

  • Park, An-Jin;Kim, Jung-Whan;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.936-946
    • /
    • 2009
  • A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.

Extensions of X-means with Efficient Learning the Number of Clusters (X-means 확장을 통한 효율적인 집단 개수의 결정)

  • Heo, Gyeong-Yong;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.772-780
    • /
    • 2008
  • K-means is one of the simplest unsupervised learning algorithms that solve the clustering problem. However K-means suffers the basic shortcoming: the number of clusters k has to be known in advance. In this paper, we propose extensions of X-means, which can estimate the number of clusters using Bayesian information criterion(BIC). We introduce two different versions of algorithm: modified X-means(MX-means) and generalized X-means(GX-means), which employ one full covariance matrix for one cluster and so can estimate the number of clusters efficiently without severe over-fitting which X-means suffers due to its spherical cluster assumption. The algorithms start with one cluster and try to split a cluster iteratively to maximize the BIC score. The former uses K-means algorithm to find a set of optimal clusters with current k, which makes it simple and fast. However it generates wrongly estimated centers when the clusters are overlapped. The latter uses EM algorithm to estimate the parameters and generates more stable clusters even when the clusters are overlapped. Experiments with synthetic data show that the purposed methods can provide a robust estimate of the number of clusters and cluster parameters compared to other existing top-down algorithms.