DOI QR코드

DOI QR Code

A Study on Data Preprocessing for the Activity-Travel Simulator: A Case of FEATHERS Seoul

활동기반 시뮬레이터 입력 자료의 전처리 방안에 대한 연구: FEATHERS Seoul을 사례로

  • Received : 2014.07.23
  • Accepted : 2014.10.14
  • Published : 2014.10.31

Abstract

Research on activity-based travel demand forecasting and activity-travel simulator has received an international attention for the last two decades. Ways to develop the activity-based simulator may be manifold. It is obvious that importing an existing simulator that has been proven internationally likely reduces the development cost and the risk of failure. By definition of the activity-based approach, however, the details of an activity-based simulator inevitably relies on particular social, economic and cultural characteristics of the society where the simulator is developed. When importing such a simulator from overseas, the researcher should be aware of the importance of tuning the system for the society to which the imported system is applied. There are many potential works on this, including for example the tuning of data structure that is likely different form of the original system. The authors are yet aware of certain research on those. The current paper aims to report the result of transforming the input data for applying the existing activity-travel simulator to Seoul. The paper first introduces FEATHERS that was developed in Belgium having Albatross which is the core of system. FEATHERS Seoul that is under development and modified version of the original FEATHERS is briefly described and the related problems are discussed. The paper then explored to resolve and to alleviate such problems.

교통수요 예측을 위한 활동기반 이론과 그 실행을 위한 시뮬레이터에 대한 연구가 국내외적으로 활발하다. 활동기반 시뮬레이터의 개발 방법 중 다른 사회 경제 문화적 토대로부터 기 개발된 시뮬레이터를 새로운 연구지역에 전용하는 방법(model transferability)은 개발 비용이 저렴하고, 실패 확률이 적다는 장점이 있다. 하지만 활동기반 교통수요 이론의 정의로부터, 시뮬레이터 구축 자체는 연구지역의 사회 경제 문화적 특성에 특화되어 있으므로 먼저 시뮬레이터의 자료구조와 구성요소에 대한 맥락적 이해가 선행되어야 한다. 이 같은 중요성에도 불구하고 활동기반 시뮬레이터의 공간적 전용 시 발생하는 문제들에 대한 관련 연구는 아직까지 보고된 바 없다. 이 논문은 ALBATROSS 스케쥴 엔진을 핵심으로 하는 FEATHERS 활동-통행 시뮬레이터를 한국의 수도권에 적용하기 위해 필요한 입력 자료의 전처리 과정에 대한 연구 결과를 자료구조와 구성요소를 중심으로 보고한다. 이를 위해, FEATHERS 시스템과 입력 자료를 간략히 소개하고, FEATHERS Seoul 플랫폼의 개발 시 발생하는 문제를 조사하고, 그 해결책과 적용 결과를 제시한다.

Keywords

References

  1. Arentze T.A., Hofman F., van Mourik H., Timmermans H.J.P. (2000), Albatross: Multi-agent rule based model of activity pattern decisions, Transportation Research Record, 1706, 136-144.
  2. Arentze T.A., Hofman F., van Mourik H., Timmermans H.J.P. (2002), Spatial Transferability of the Albatross Model System: Empirical Evidence from Two Case Studies, Transportation Research Record: Journal of the Transportation Research Board, 1805, 1-7.
  3. Arentze T.A., Timmermans H.J.P. (2012), Travel demand modelling: Conceptual developments and perspectives, Transportation Letters, 4, 85-92.
  4. Bellemans T., Kochan B., Janssens D., Wets G., Arentze T., Timmermans H.J.P. (2010), Implementation framework and development trajectory of FEATHERS activity-based simulation platform, Transportation Research Record, 2175, 111-119.
  5. Bhat C.R., Guo J.Y., Srinivasan S., Sivakumar A. (2004), A Comprehensive Econometric Micro-simulator for Daily Activity-travel Patterns (CEMDAP), Paper presented at the 83rd Annual Meeting of TRB, Washington D.C.
  6. Devore J.L. (2000), Probability and Statistics for Engineering and the Sciences, 5th ed. Duxbury, Pacific Grove, CA.
  7. Doherty S.T. (2003), Should we abandon activity type analysis? Paper presented at the 10th International Conference on Travel Behavior Research, Lucerne.
  8. Goulias K.G., Bhat C.R., Pendyala R.M., Chen Y., Paleti R., Konduri K.C., Lei T., Tang D., Yoon S.Y., Huang G., Hu H.H. (2012), Simulator of Activities, Greenhouse Emissions, Networks and Travel (SimAGENT) in Southern California, Paper presented at the 91st Annual Meeting of TRB, Washington D.C.
  9. Guo J.Y., Bhat C.R. (2007), Population synthesis for microsimulating travel behavior, Transportation Research Record, 2014, 92-101.
  10. Knapen L., Kochan B., Bellemans T., Janssens D., Wets G. (2012), Using activity-based modeling to predict spatial and temporal power demand of electric vehicles in Flanders, Belgium, Transportation Research Record, 2287, 146-154.
  11. Kochan B., Bellemans T., Cools M., Janssens D., Wets G. (2011), An estimation of total vehicle travel reduction in the case of telecommuting, Detailed analyses using an activity-based modeling approach, Paper presented at European Transportation Conference, Glasgow.
  12. Lee B.J., Lee C.Y., Kim J.K. (2011), Mobility management for sustainable urban transportation policy paradigm (지속가능한 도시교통정책 패러다 임 모빌리티 매니지먼트), The 64th Conference of Korean Society of Transportation, Korean Society of Transportation, 177-193. (in Korean)
  13. Lee W.D., Joh C.H., Cho S., Kochan B. (2014), Issues in Feathers application in the Seoul Metropolitan Area, Data Science and Simulation in Transportation Research, IGI, 71-85.
  14. Lim G.G., Kim S.G., Jung S.B. (2013), Activity-based approaches for travel demand modeling: Reviews on developments and implementations, Journal of the Korean Society of Civil Engineers, 33, 719-727. (in Korean) https://doi.org/10.12652/Ksce.2013.33.2.719
  15. Park J.Y., Lee J.S., Kim Y.H., You J.B. (2012), A Fundamental Study for Analyzing Future Human Mobility (2012-24), The Korea Transport Institute. (in Korean)
  16. Pinjari A.R., Bhat C.R. (2010), Activity-based travel demand analysis, in A. de Palma, R. Lindsey, E. Quinet and R. Vickerman (eds.), Handbook of Transport Economics, Chapter 10, Edward Elgar Publishing, 213-248.
  17. Pirdavani A., Brijs T., Bellemans T., Kochan B., Wets G. (2012), Application of different exposure measures in developing planning-level zonal crash prediction models, Transportation Research Record, 2280, 145-153.
  18. Pritchard D.R., Miller E.J. (2012), Advances in Population Synthesis: Fitting Many Attributes per Agent and Fitting to Household and Person Margins Simultaneously, Transportation, 39(3), 685-704. https://doi.org/10.1007/s11116-011-9367-4
  19. Sikder S., Pinjari A.R., Srinivasan S., Nowrouzian R. (2013), Spatial Transferability of Travel Forecasting Models: A Review and Synthesis, International Journal of Advances in Engineering Sciences and Applied Mathematics, 5(2-3), 104-128. https://doi.org/10.1007/s12572-013-0090-6
  20. Timmermans H.J.P., Arentze T.A., Joh C.H. (2002), Analysing space-time behaviour: New approaches to old problems, Progress in Human Geography, 26, 175-190. https://doi.org/10.1191/0309132502ph363ra
  21. Ye X., Konduri K.C., Pendyala R.M., Sana B., Waddell B. (2009), A methodology to match distributions of both household and person attributes in the generation of synthetic populations, Paper presented at the 88th Annual Meeting of TRB, Washington D.C.

Cited by

  1. An examination of the accuracy of an activity-based travel simulation against smartcard and navigation device data vol.7, 2017, https://doi.org/10.1016/j.tbs.2017.01.001
  2. 활동기반모형을 이용한 유연근무제의 교통부문 영향 연구 vol.35, pp.6, 2014, https://doi.org/10.7470/jkst.2017.35.6.511