DOI QR코드

DOI QR Code

Incorporation of Nasutitermes takasagoensis Endoglucanase into Cell Surface-Displayed Minicellulosomes in Pichia pastoris X33

  • Ou, Jingshen (School of Bioscience and Bioengineering, South China University of Technology) ;
  • Cao, Yicheng (School of Bioscience and Bioengineering, South China University of Technology)
  • 투고 : 2014.02.18
  • 심사 : 2014.05.20
  • 발행 : 2014.09.28

초록

In this study, the yeast Pichia pastoris was genetically modified to assemble minicellulosomes on its cell surface by the heterologous expression of a truncated scaffoldin CipA from Clostridium acetobutylicum. Fluorescence microscopy and western blot analysis confirmed that CipA was targeted to the yeast cell surface and that NtEGD, the Nasutitermes takasagoensis endoglucanase that was fused with dockerin, interacted with CipA on the yeast cell surface, suggesting that the cohesin and dockerin domains and cellulose-binding module of C. acetobutylicum were functional in the yeasts. The enzymatic activities of the cellulases in the minicellulosomes that were displayed on the yeast cell surfaces increased dramatically following interaction with the cohesin-dockerin domains. Additionally, the hydrolysis efficiencies of NtEGD for carboxymethyl cellulose, microcrystal cellulose, and filter paper increased up to 1.4-fold, 2.0-fold, and 3.2-fold, respectively. To the best of our knowledge, this is the first report describing the expression of C. acetobutylicum minicellulosomes in yeast and the incorporation of animal cellulases into cellulosomes. This strategy of heterologous cellulase incorporation lends novel insight into the process of cellulosome assembly. Potentially, the surface display of cellulosomes, such as that reported in this study, may be utilized in the engineering of S. cerevisiae for ethanol production from cellulose and additional future applications.

키워드

참고문헌

  1. Adams JJ, Webb BA, Spencer HL, Smith SP. 2005. Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: calcium-induced effects on conformation and target recognition. Biochemistry 44: 2173-2182. https://doi.org/10.1021/bi048039u
  2. Bayer EA, Shoham Y, Lamed R. 2006. Cellulose-decomposing bacteria and their enzyme systems, pp. 578-617. Prokaryotes. Springer Publisher, Ins.
  3. Beguin P, Alzari PM. 1998. The cellulosome of Clostridium thermocellum. Biochem. Soc. Trans. 26: 178-185. https://doi.org/10.1042/bst0260178
  4. Belaich JP, Tardif C, Belaich A, Gaudin C. 1997. The cellulolytic system of Clostridium cellulolyticum. J. Biotechnol. 57: 3-14. https://doi.org/10.1016/S0168-1656(97)00085-0
  5. Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA. 2009. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl. Environ. Microbiol. 75: 7335-7342. https://doi.org/10.1128/AEM.01241-09
  6. Caspi J, Irwin D, Lamed R, Li Y, Fierobe H-P, Wilson DB, Bayer EA. 2008. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: Comparative impact on cellulose-degrading activity. J. Biotechnol. 135: 351-357. https://doi.org/10.1016/j.jbiotec.2008.05.003
  7. Caspi J, Irwin D, Lamed R, Shoham Y, Fierobe HP, Wilson DB, Bayer EA. 2006. Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal. Biotransform. 24: 3-12. https://doi.org/10.1080/10242420600598046
  8. Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, Bairoch A. 1990. Calcium-binding affinity and calciumenhanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265: 261-265. https://doi.org/10.1042/bj2650261
  9. Chiruvolu V, Cregg JM, Meagher MM. 1997. Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbatch fermentations. Enzyme Microb. Technol. 21: 277-283. https://doi.org/10.1016/S0141-0229(97)00042-2
  10. Choi SK, Ljungdahl LG. 1996. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry 35: 4906-4910. https://doi.org/10.1021/bi9524631
  11. Desvaux M. 2005. The cellulosome of Clostridium cellulolyticum. Enzyme Microb. Technol. 37: 373-385. https://doi.org/10.1016/j.enzmictec.2004.04.025
  12. Desvaux M. 2005. Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29: 741-764. https://doi.org/10.1016/j.femsre.2004.11.003
  13. Doi RH, Park JS, Liu CC, Malburg LM, Tamaru Y, Ichiishi A, Ibrahim A. 1998. Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2: 53-60. https://doi.org/10.1007/s007920050042
  14. Doi RH, Tamaru Y. 2001. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chem. Rec. 1: 24-32. https://doi.org/10.1002/1528-0691(2001)1:1<24::AID-TCR5>3.0.CO;2-W
  15. Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, et al. 2002. Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J. Biol. Chem. 277: 49621-49630. https://doi.org/10.1074/jbc.M207672200
  16. Fierobe HP, Pages S, Belaich A, Champ S, Lexa D, Belaich JP. 1999. Cellulosome from Clostridium cellulolyticum: molecular study of the dockerin/cohesin interaction. Biochemistry 38: 12822-12832. https://doi.org/10.1021/bi9911740
  17. Gal L, Pages S, Gaudin C, Belaich A, ReverbelLeroy C, Tardif C, Belaich JP. 1997. Characterization of the cellulolytic complex (cellulosome) produced by Clostridium cellulolyticum. Appl. Environ. Microbiol. 63: 903-909.
  18. Ghose TK. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  19. Goossens KV, Stassen C, Stals I, Donohue DS, Devreese B, De Greve H, Willaert RG. 2011. The N-terminal domain of the Flo1 flocculation protein from Saccharomyces cerevisiae binds specifically to mannose carbohydrates. Eukaryot. Cell 10: 110-117. https://doi.org/10.1128/EC.00185-10
  20. Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. 2011. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb. Cell Fact. 10: 89. https://doi.org/10.1186/1475-2859-10-89
  21. Henrissat B, Driguez H, Viet C, Schulein M. 1985. Synergism of cellulases from Trichoderma reesei in the degradation of cellulose. Nat. Biotech. 3: 722-726. https://doi.org/10.1038/nbt0885-722
  22. Hirayama K, Watanabe H, Tokuda G, Kitamoto K, Arioka M. 2010. Purification and characterization of termite endogenous beta-1,4-endoglucanases produced in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 74: 1680-1686. https://doi.org/10.1271/bbb.100296
  23. Ito J, Fujita Y, Ueda M, Fukuda H, Kondo A. 2004. Improvement of cellulose-degrading ability of a yeast strain displaying Trichoderma reesei endoglucanase II by recombination of cellulose-binding domains. Biotechnol. Prog. 20: 688-691. https://doi.org/10.1021/bp034332u
  24. Kakiuchi M, Isui A, Suzuki K, Fujino T, Fujino E, Kimura T, et al. 1998. Cloning and DNA sequencing of the genes encoding Clostridium josui scaffolding protein CipA and cellulase CelD and identification of their gene products as major components of the cellulosome. J. Bacteriol. 180: 4303-4308.
  25. Karpol A, Kantorovich L, Demishtein A, Barak Y, Morag E, Lamed R, Bayer EA. 2009. Engineering a reversible, highaffinity system for efficient protein purification based on the cohesin-dockerin interaction. J. Mol. Recognit. 22: 91-98. https://doi.org/10.1002/jmr.926
  26. Kataeva IA, Uversky VN, Ljungdahl LG. 2003. Calcium and domain interactions contribute to the thermostability of domains of the multimodular cellobiohydrolase, CbhA, a subunit of the Clostridium thermocellum cellulosome. Biochem. J. 372: 151-161. https://doi.org/10.1042/BJ20021621
  27. Kim AY, Attwood GT, Holt SM, White BA, Blaschek HP. 1994. Heterologous expression of endo-beta-1,4-D-glucanase from Clostridium cellulovorans in Clostridium acetobutylicum ATCC 824 following transformation of the EngB gene. Appl. Environ. Microbiol. 60: 337-340.
  28. Kim S, Baek SH, Lee K, Hahn JS. 2013. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and beta-glucosidase. Microb. Cell Fact. 12: 14. https://doi.org/10.1186/1475-2859-12-14
  29. Lilly M, Fierobe HP, van Zyl WH, Volschenk H. 2009. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res. 9: 1236-1249. https://doi.org/10.1111/j.1567-1364.2009.00564.x
  30. Lytle BL, Volkman BF, Westler WM, Wu JH. 2000. Secondary structure and calcium-induced folding of the Clostridium thermocellum dockerin domain determined by NMR spectroscopy. Arch. Biochem. Biophys 379: 237-244. https://doi.org/10.1006/abbi.2000.1882
  31. Matsumoto T, Fukuda H, Ueda M, Tanaka A, Kondo A. 2002. Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl. Environ. Microbiol. 68: 4517-4522. https://doi.org/10.1128/AEM.68.9.4517-4522.2002
  32. Mingardon F, Chanal A, Lopez-Contreras AM, Dray C, Bayer EA, Fierobe HP. 2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl. Environ. Microbiol. 73: 3822-3832. https://doi.org/10.1128/AEM.00398-07
  33. Mingardon F, Chanal A, Tardif C, Bayer EA, Fierobe HP. 2007. Exploration of new geometries in cellulosome-like chimeras. Appl. Environ. Microbiol. 73: 7138-7149. https://doi.org/10.1128/AEM.01306-07
  34. Mingardon F, Chanal A, Tardif C, Fierobe HP. 2011. The issue of secretion in heterologous expression of Clostridium cellulolyticum cellulase-encoding genes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 77: 2831-2838. https://doi.org/10.1128/AEM.03012-10
  35. Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP. 2005. Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 71: 1215-1222. https://doi.org/10.1128/AEM.71.3.1215-1222.2005
  36. Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, et al. 2010. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio. 1: e00285-10.
  37. Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, et al. 2010. Contribution of a xylan-binding module to the degradation of a complex cellulosic substrate by designer cellulosomes. Appl. Environ. Microbiol. 76: 3787-3796. https://doi.org/10.1128/AEM.00266-10
  38. Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, et al. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823-4838. https://doi.org/10.1128/JB.183.16.4823-4838.2001
  39. Ou JS, Ge H, Cao YC. 2013. Thermomonospora fusca endoglucanase E4 incorporate into Clostridium acetobutylicum minicellulosomes by in vitro assemble. J. South China Univ. Technol. 41: 90-94.
  40. Pakula TM, Laxell M, Huuskonen A, Uusitalo J, Saloheimo M, Penttila M. 2003. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. J. Biol. Chem. 278: 45011-45020. https://doi.org/10.1074/jbc.M302372200
  41. Perret S, Casalot L, Fierobe HP, Tardif C, Sabathe F, Belaich JP, Belaich A. 2004. Production of heterologous and chimeric scaffoldins by Clostridium acetobutylicum ATCC 824. J. Bacteriol. 186: 253-257. https://doi.org/10.1128/JB.186.1.253-257.2004
  42. Ren Z, Ward TE, Logan BE, Regan JM. 2007. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J. Appl. Microbiol. 103: 2258-2266. https://doi.org/10.1111/j.1365-2672.2007.03477.x
  43. Sabathe F, Belaich A, Soucaille P. 2002. Characterization of the cellulolytic complex (cellulosome) of Clostridium acetobutylicum. FEMS Microbiol. Lett. 217: 15-22. https://doi.org/10.1111/j.1574-6968.2002.tb11450.x
  44. Sabathe F, Soucaille P. 2003. Characterization of the CipA scaffolding protein and in vivo production of a minicellulosome in Clostridium acetobutylicum. J. Bacteriol. 185: 1092-1096. https://doi.org/10.1128/JB.185.3.1092-1096.2003
  45. Sakka M, Goto M, Fujino T, Fujino E, Karita S, Kimura T, Sakka K. 2010. Analysis of a Clostridium josui cellulase gene cluster containing the man5A gene and characterization of recombinant man5A. Biosci. Biotechnol. Biochem. 74: 2077-2082. https://doi.org/10.1271/bbb.100458
  46. Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia ul H. 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv. 26: 151-161. https://doi.org/10.1016/j.biotechadv.2007.10.002
  47. Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  48. Su GD, Zhang X, Lin Y. 2010. Surface display of active lipase in Pichia pastoris using Sed1 as an anchor protein. Biotechnol. Lett. 32: 1131-1136. https://doi.org/10.1007/s10529-010-0270-4
  49. Suzuki H, Imaeda T, Kitagawa T, Kohda K. 2012. Deglycosylation of cellulosomal enzyme enhances cellulosome assembly in Saccharomyces cerevisiae. J. Biotechnol. 157: 64-70. https://doi.org/10.1016/j.jbiotec.2011.11.015
  50. Tamaru Y, Karita S, Ibrahim A, Chan H, Doi RH. 2000. A large gene cluster for the Clostridium cellulovorans cellulosome. J. Bacteriol. 182: 5906-5910. https://doi.org/10.1128/JB.182.20.5906-5910.2000
  51. Tanino T , Fukuda H , Kondo A. 2006. Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system. Biotechnol. Prog. 22: 989-993. https://doi.org/10.1021/bp060133+
  52. Thompson CE, Beys-da-Silva WO, Santi L, Berger M, Vainstein MH, Guima Raes JA, Vasconcelos AT. 2013. A potential source for cellulolytic enzyme discovery and environmental aspects revealed through metagenomics of Brazilian mangroves. AMB Express 3: 65. https://doi.org/10.1186/2191-0855-3-65
  53. Tokuda G, Lo N, Watanabe H, Slaytor M, Matsumoto T, Noda H. 1999. Metazoan cellulase genes from termites: Intron/exon structures and sites of expression. Biochim. Biophys. Acta 1447: 146-159. https://doi.org/10.1016/S0167-4781(99)00169-4
  54. Tokuda G, Watanabe H, Matsumoto T, Noda H. 1997. Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (shiraki): distribution of cellulases and properties of endo-beta-1,4-glucanase. Zool. Sci. 14: 83-93. https://doi.org/10.2108/zsj.14.83
  55. Tsai SL, DaSilva NA, Chen W. 2013. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth. Biol. 2: 14-21. https://doi.org/10.1021/sb300047u
  56. Tsai SL, Oh J, S ingh S , Chen RZ, Chen W. 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl. Environ. Microbiol. 75: 6087-6093. https://doi.org/10.1128/AEM.01538-09
  57. Ueda M, Tanaka A. 2000. Genetic immobilization of proteins on the yeast cell surface. Biotechnol. Adv. 18: 121-140. https://doi.org/10.1016/S0734-9750(00)00031-8
  58. Uversky VN, Kataeva IA. 2006. Cellulosome, pp. 7-21. Nova Science Publishers, New York.
  59. Vazana Y, Morais S, Barak Y, Lamed R, Bayer EA. 2010. Interplay between Clostridium thermocellum family 48 and family 9 cellulases in cellulosomal versus noncellulosomal states. Appl. Environ. Microbiol. 76: 3236-3243. https://doi.org/10.1128/AEM.00009-10
  60. Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K, Contreras R. 2004. In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl. Environ. Microbiol. 70: 2639-2646. https://doi.org/10.1128/AEM.70.5.2639-2646.2004
  61. Washida M, Takahashi S, Ueda M, Tanaka A. 2001. Spacermediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681-686. https://doi.org/10.1007/s002530100718
  62. Wen F, Sun J, Zhao HM. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl. Environ. Microbiol. 76: 1251-1260. https://doi.org/10.1128/AEM.01687-09
  63. You C, Zhang XZ, Sathitsuksanoh N, Lynd LR, Zhang YH. 2012. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl. Environ. Microbiol. 78: 1437-1444. https://doi.org/10.1128/AEM.07138-11

피인용 문헌

  1. Production of D-Xylonic Acid from Hemicellulose Using Artificial Enzyme Complexes vol.27, pp.1, 2014, https://doi.org/10.4014/jmb.1606.06041
  2. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides vol.15, pp.2, 2017, https://doi.org/10.1038/nrmicro.2016.164
  3. Heterologous Protein Expression in Pichia pastoris: Latest Research Progress and Applications vol.19, pp.1, 2014, https://doi.org/10.1002/cbic.201700460
  4. Reconstitution of cellulosome: Research progress and its application in biorefinery vol.66, pp.5, 2014, https://doi.org/10.1002/bab.1804
  5. Engineering of industrially important microorganisms for assimilation of cellulosic biomass: towards consolidated bioprocessing vol.47, pp.6, 2014, https://doi.org/10.1042/bst20190293