DOI QR코드

DOI QR Code

Effects of Residual Dispersion in Half Transmission Section on Net Residual Dispersion in Optical Transmission Links with Dispersion Management and Mid-Span Spectral Inversion

분산 제어와 Mid-Span Spectral Inversion이 적용된 광전송 링크에서 반 전송 구획의 잉여 분산이 전체 잉여 분산에 미치는 영향

  • Lee, Seong-Real (Department of Marine Information and Communication Engineering, Mokpo National Maritime University)
  • 이성렬 (목포해양대학교 해양정보통신공학과)
  • Received : 2014.09.17
  • Accepted : 2014.10.06
  • Published : 2014.10.30

Abstract

The system performance is analized for the optimal design of the transmission links with dispersion management and optical phase conjugation for compensating for the optical signal distortion due to the group velocity dispersion and optical nonlinear Kerr effects in the long-haul optical transmission system. That is, the effect of the relation of the residual dispersion in both half transmission sections with respect with optical phase conjugator (OPC) on the net residual dispersion (NRD) is assessed. It is conformed that the best compensation is obtained in NRD of 10 ps/nm, which is only controlled by the difference of the residual dispersion between each half transmission sections.

장거리 광전송 시스템에서 그룹 속도 분산과 비선형 현상에 의한 왜곡을 보상할 수 있는 분산 제어 (DM; dispersion management)와 광 위상 공액 기술이 결합된 전송 링크의 최적 설계를 위한 성능 분석을 수행하였다. 즉 전체 전송 링크의 중간에 위치한 광위상 공액기 (OPC; optical phase conjugator) 양쪽의 전송 구획에서의 잉여 분산의 상호 관계가 최적 전체 잉여 분산 (NRD; net residual dispersion)에 미치는 영향을 살펴보았다. 시뮬레이션 결과 전반 전송 구획에서의 잉여 분산과 후반 전송 구획에서의 잉여 분산의 차이를 10 ps/nm로 하여 전체 전송 링크의 NRD를 10 ps/nm로 설정하여야 가장 우수한 보상이 이루어진다는 것을 확인하였다.

Keywords

References

  1. G. P. Agrawal, Nonlinear fiber optics, 3rd ed. San Francisco:CA, Academic Press, 2001.
  2. L. Gruner-Nielsen, et al., "Dispersion-compensating fibers," Journal of Lightwave Technology, Vol. 23, No. 11, pp. 3566-3578, 2005. https://doi.org/10.1109/JLT.2005.855873
  3. M. Wu, W. I. Way, "Fiber nonlinearity limitations in ultra-dense WDM systems," Journal of Lightwave Technology, Vol. 22, No. 6, pp. 1483-1498, 2004. https://doi.org/10.1109/JLT.2004.829222
  4. X. Xiao, S. Gao, Y. Tian, and C. Yang, "Analytical optimization of the net residual dispersion in SPM-limited dispersion-managed systems," Journal of Lightwave Technology, Vol. 24, No. 5, pp. 2038-2044, 2006. https://doi.org/10.1109/JLT.2006.872278
  5. M. Suzuki and N. Edagawa, "Dispersion-managed high-capacity ultra-long-haul transmission," Journal of Lightwave Technology, Vol. 21, No. 4, pp. 916-929, 2003. https://doi.org/10.1109/JLT.2003.810098
  6. S. Watanabe and M. Shirasaki, "Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation," Journal of Lightwave Technology, Vol. 14, No. 3, pp 243-248, 1996. https://doi.org/10.1109/50.485581
  7. A. Chowdhury and R.-J.Essiambre, "Optical phase conjugation and pseudolinear transmission," Optics Letter, Vol. 29, No. 10, pp. 1105-1107, 2004. https://doi.org/10.1364/OL.29.001105
  8. X. Xiao, C. Yang, S. Gao, and Y. Tian, "Partial compensation of Kerr nonlinearities by optical phase conjugation in optical fiber transmission systems without power symmetry," Optical Communication, Vol. 265, No. 1, pp. 326-330, 2006. https://doi.org/10.1016/j.optcom.2006.03.007
  9. P. Minzioni and A. Schiffini, "Unifying theory of compensation techniques for intrachannel nonlinear effects," Optical Express, Vol. 13, No. 21, pp. 8460-8468, 2005. https://doi.org/10.1364/OPEX.13.008460
  10. S. R. Lee and S. E. Cho, "NRZ versus RZ modulation format in lumped dispersion managed systems," Journal of The Korea Institute of Maritime Information & Communication Sciences, Vol. 12, No. 2, pp. 327-335, 2008.
  11. S. R. Lee, "Dispersion management and optical phase conjugation in optical transmission links with a randomly distributed single-mode fiber length," Journal of Information and Communication Convergence Engineering, Vol. 11, No. 1, pp. 1-6, 2013. https://doi.org/10.6109/jicce.2013.11.1.001
  12. S. R. Lee, "Compensation characteristics of distorted WDM signals depending on distribution patterns of SMF length and RDPS," Journal of Advanced Navigation Technology, Vol. 18, No. 2, pp. 158-164, 2014. https://doi.org/10.12673/jant.2014.18.2.158
  13. N. Kikuchi and S. Sasaki, "Analytical evaluation technique of self-phase modulation effect on the performance of cascaded optical amplifier systems," Journal of Lightwave Technology, Vol. 13, No. 5, pp. 868-878, 1995. https://doi.org/10.1109/50.387804

Cited by

  1. SMF 길이와 RDPS가 랜덤하게 분포하는 장거리 전송 링크에서의 왜곡된 WDM 채널의 보상 vol.19, pp.4, 2015, https://doi.org/10.12673/jant.2015.19.4.323
  2. Non-midway 광 위상 공액기를 갖는 분산 제어 전송 링크를 통한 WDM 채널의 왜곡 보상 vol.19, pp.6, 2015, https://doi.org/10.12673/jant.2015.19.6.595
  3. SMF 길이와 중계 구간 당 잉여 분산의 분포가 균일한 분산 제어 광전송 링크 vol.20, pp.2, 2016, https://doi.org/10.12673/jant.2016.20.2.161
  4. SMF와 DCF의 길이와 분산 계수가 불규칙하게 분포하는 분산 제어 링크 vol.22, pp.3, 2018, https://doi.org/10.12673/jant.2018.22.3.240