DOI QR코드

DOI QR Code

Effects of comonomer with carboxylic group on stabilization of high molecular weight polyacrylonitrile nanofibrous copolymers

  • Lei, Danyun (Departments of BIN Fusion Technology, Chonbuk National University) ;
  • Devarayan, Kesavan (Departments of BIN Fusion Technology, Chonbuk National University) ;
  • Li, Xiang-Dan (Key Laboratory of Catalysis and Materials Science, The State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities) ;
  • Choi, Woong-Ki (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Seo, Min-Kang (R&D Division, Korea Institute of Carbon Convergence Technology) ;
  • Kim, Byoung-Suhk (Departments of BIN Fusion Technology, Chonbuk National University)
  • Received : 2014.09.06
  • Accepted : 2014.10.05
  • Published : 2014.10.31

Abstract

New precursors, poly(acrylonitrile-co-crotonic acid) (poly(AN-CA)) and poly(acrylonitrile-co-itaconic acid-co-crotonic acid) (poly(AN-IA-CA)) copolymers, for the preparation of carbon fibers, were explored in this study. The effects of comonomers with acidic groups, such as crotonic acid (CA) and/or itaconic acid (IA), on the stabilization of nanofibrous polyacrylonitrile (PAN) copolymers were studied. The extent of stabilization, evaluated by Fourier transform infrared spectroscopy, revealed that the CA comonomer could retard/control the stabilization rate of PAN, in contrast to the IA comonomer, which accelerated the stabilization process. Moreover, the synthesized PAN copolymers containing CA possessed higher Mv than those of the IA copolymers and also showed outstanding dimension stability of nanofibers during the stabilization, which may be a useful property for improving the dimensional stability of polymer composites during manufacturing.

Keywords

References

  1. Chand S. Carbon fibers for composites. J Mater Sci, 35, 1303 (2000). http://dx.doi.org/10.1023/A:1004780301489.
  2. Mochida I, Yoon SH, Takano N, Fortin F, Korai Y, Yokogawa K. Microstructure of mesophase pitch-based carbon fiber and its control. Carbon, 34, 941 (1996). http://dx.doi.org/10.1016/0008-6223(95)00172-7.
  3. Li W, Long D, Miyawaki J, Qiao W, Ling L, Mochida I, Yoon SH. Structural features of polyacrylonitrile-based carbon fibers. J Mater Sci, 47, 919 (2012). http://dx.doi.org/10.1007/s10853-011-5872-2.
  4. Lv MY, Ge HY, Chen J. Study on the chemical structure and skincore structure of polyacrylonitrile-based fibers during stabilization. J Polym Res, 16, 513 (2009). http://dx.doi.org/10.1007/s10965-008-9254-7.
  5. Zhang WX, Wang YZ, Sun CF. Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res, 14, 467 (2007). http://dx.doi.org/10.1007/s10965-007-9130-x.
  6. Bahl OP, Manocha LM. Characterization of oxidised pan fibres. Carbon, 12, 417 (1974). http://dx.doi.org/10.1016/0008-6223(74)90007-4.
  7. Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers. Carbon, 41, 2805 (2003). http://dx.doi.org/10.1016/S0008-6223(03)00391-9.
  8. Ko YI, Lee Y, Devarayan K, Kim BS, Hayashi T, Kim IS. Annealing effects on mechanical properties and shape memory behaviors of silicone-coated elastomeric polycaprolactone nanofiber filaments. Mater Lett, 131, 128 (2014). http://dx.doi.org/10.1016/j.matlet.2014.05.184.
  9. Wu M, Wang Q, Li K, Wu Y, Liu H. Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers. Polym Degrad Stab, 97, 1511 (2012). http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.001.
  10. Cleland RL, Stockmayer WH. An intrinsic viscosity-molecular weight relation for polyacrylonitrile. J Polym Sci, 17, 473 (1955). http://dx.doi.org/10.1002/pol.1955.120178602.
  11. Liu JJ, Ge H, Wang CG. Modification of polyacrylonitrile precursors for carbon fiber via copolymerization of acrylonitrile with ammonium itaconate. J Appl Polym Sci, 102, 2175 (2006). http://dx.doi.org/10.1002/app.24256.
  12. Bhanu VA, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass TE, Banthia AK, Yang J, Wilkes G, Baird D, McGrath JE. Synthesis and characterization of acrylonitrile methyl acrylate statistical copolymers as melt processable carbon fiber precursors. Polymer, 43, 4841 (2002). http://dx.doi.org/10.1016/S0032-3861(02)00330-0.
  13. Rahaman MSA, Ismail AF, Mustafa A. A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab, 92, 1421 (2007). http://dx.doi.org/10.1016/j.polymdegradstab.2007.03.023.
  14. Devasia R, Nair CPR, Sadhana R, Babu NS, Ninan KN. Fourier transform infrared and wide-angle X-ray diffraction studies of the thermal cyclization reactions of high-molar-mass poly(acrylonitrile-co-itaconic acid). J Appl Polym Sci, 100, 3055 (2006). http://dx.doi.org/10.1002/app.23705.
  15. Ju A, Zhang K, Luo M, Ge M. Poly(acrylonitrile-co-3-ammoniumcarboxylate- 3-butenoic acid methyl ester): a better carbon fiber precursor than acrylonitrile terpolymer. J Polym Res, 21, 1 (2014). http://dx.doi.org/10.1007/s10965-014-0395-6.
  16. Ouyang Q, Cheng L, Wang H, Li K. Mechanism and kinetics of the stabilization reactions of itaconic acid-modified polyacrylonitrile. Polym Degrad Stab, 93, 1415 (2008). http://dx.doi.org/10.1016/j.polymdegradstab.2008.05.021.
  17. Shimada I, Takahagi T, Fukuhara M, Morita K, Ishitani A. FT-IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers. J Polym Sci A, 24, 1989 (1986). http://dx.doi.org/10.1002/pola.1986.080240819.

Cited by

  1. A high molecular weight acrylonitrile copolymer prepared by mixed solvents polymerization: II. effect of DMSO/water ratios on polymerization and stabilization vol.23, pp.10, 2016, https://doi.org/10.1007/s10965-016-1103-5
  2. Effect of tacticity on the cyclization of polyacrylonitrile copolymers vol.295, pp.5, 2017, https://doi.org/10.1007/s00396-017-4062-4
  3. Structure evolution mechanism of poly(acrylonitrile/itaconic acid/acrylamide) during thermal oxidative stabilization process vol.35, pp.8, 2017, https://doi.org/10.1007/s10118-017-1945-2
  4. Thermal analysis and melt spinnability of poly(acrylonitrile-co-methyl acrylate) and poly(acrylonitrile-co-dimethyl itaconate) copolymers pp.1746-7748, 2017, https://doi.org/10.1177/0040517517703597