DOI QR코드

DOI QR Code

Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide

  • Choi, Sua (Department of Chemical Engineering, Dong-A University) ;
  • Hwang, Duck Kun (Department of Corporate Diagnosis, Small & Medium Business Corporation) ;
  • Lee, Heon Sang (Department of Chemical Engineering, Dong-A University)
  • Received : 2014.07.11
  • Accepted : 2014.09.25
  • Published : 2014.10.31

Abstract

Blends of poly(vinyl alcohol) (PVA), polyethyleneimine (PEI), and graphene oxide (GO) were prepared by solution casting method. Calorimetric thermal properties of the blends were investigated. The $T_gs$ of PVA/PEI blends were higher than the $T_gs$ of either of the component polymers at low concentrations of PEI. These abnormal increases of $T_gs$ may be due to the negative entropy of mixing which is associated with strong hydrogen bonding between PVA and PEI. The degree of depression of $T^0_ms$ was not reduced by the negative entropy of mixing, since strong hydrogen bonding also causes an increase in the magnitude of negative ${\chi}$ between PVA and PEI. The $T_g$ of PVA was increased significantly by adding 0.7 wt.% GO into PVA. The magnitude of negative ${\chi}$ was increased by adding GO into the blends of PVA and PEI.

Keywords

References

  1. Gao Q, Takizawa J, Kimura M. Hydrophilic non-wovens made of cross-linked fully-hydrolyzed poly(vinyl alcohol) electrospun nanofibers. Polymer, 54, 120 (2013). http://dx.doi.org/10.1016/j.polymer.2012.11.022.
  2. Bessbousse H, Verchere JF, Lebrun L. Characterisation of metalcomplexing membranes prepared by the semi-interpenetrating polymer networks technique. Application to the removal of heavy metal ions from aqueous solutions. Chem Eng J, 187, 16 (2012). http://dx.doi.org/10.1016/j.cej.2011.12.079.
  3. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b.
  4. Ben Hamouda S, Nguyen QT, Langevin D, Roudesli S. Poly(vinylalcohol)/poly(ethyleneglycol)/poly(ethyleneimine) blend membranes: structure and $CO_2$ facilitated transport. Comptes Rendus Chimie, 13, 372 (2010). http://dx.doi.org/10.1016/j.crci.2009.10.009.
  5. Ben Hamouda S, Roudesli S. Transport properties of PVA/PEI/ PEG composite membranes: sorption and permeation characterizations. Cent Eur J Chem, 6, 634 (2008). http://dx.doi.org/10.2478/s11532-008-0053-0.
  6. Rao PS, Sridhar S, Wey MY, Krishnaiah A. Pervaporation performance and Transport phenomenon of PVA blend membranes for the separation of THF/water azeotropic mixtures. Polym Bull, 59, 289 (2007). http://dx.doi.org/10.1007/s00289-007-0769-6.
  7. Dong C, Yuan X, He M, Yao K. Preparation of PVA/PEI ultra-fine fibers and their composite membrane with PLA by electrospinning. J Biomater Sci, Polymer Ed, 17, 631 (2006). http://dx.doi.org/10.1163/156856206777346287.
  8. Matsuyama H, Terada A, Nakagawara T, Kitamura Y, Teramoto M. Facilitated transport of $CO_2$ through polyethylenimine/poly(vinyl alcohol) blend membrane. J Membr Sci, 163, 221 (1999). http://dx.doi.org/10.1016/S0376-7388(99)00183-0.
  9. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 11, 771 (1999). http://dx.doi.org/10.1021/cm981085u.
  10. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS. Preparation and characterization of graphene oxide paper. Nature, 448, 457 (2007). http://dx.doi.org/10.1038/nature06016.
  11. Geim AK, Novoselov KS. The rise of graphene. Nat Mater, 6, 183 (2007). http://dx.doi.org/10.1038/nmat1849.
  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  13. Shin D, Bae S, Yan C, Kang J, Ryu J, Ahn JH, Hong BH. Synthesis and applications of graphene electrodes. Carbon Lett, 13, 1 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.001.
  14. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706 (2009). http://dx.doi.org/10.1038/nature07719.
  15. Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules, 43, 6515 (2010). http://dx.doi.org/10.1021/ma100572e.
  16. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphenebased composite materials. Nature, 442, 282 (2006). http://dx.doi.org/10.1038/nature04969.
  17. Jun SI, Lee HS. Negative normal stress differences in graphene/ polycarbonate composites. Appl Phys Lett, 100,164108 (2012). http://dx.doi.org/10.1063/1.4704929.
  18. Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films, 519, 7766 (2011). http://dx.doi.org/10.1016/j.tsf.2011.06.016.
  19. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak: tight graphene-based membranes. Science, 335, 442 (2012). http://dx.doi.org/10.1126/science.1211694.
  20. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular- level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater, 19, 2297 (2009). http://dx.doi.org/10.1002/adfm.200801776.
  21. Choperena A, Painter P. Hydrogen bonding in polymers: effect of temperature on the OH stretching bands of poly(vinylphenol). Macromolecules, 42, 6159 (2009). http://dx.doi.org/10.1021/ma900928z.
  22. Pinal R. Entropy of mixing and the glass transition of amorphous mixtures. Entropy, 10, 207 (2008). http://dx.doi.org/10.3390/entropy-e10030207.
  23. Kuo SW. Hydrogen-bonding in polymer blends. J Polym Res, 15, 459 (2008). http://dx.doi.org/10.1007/s10965-008-9192-4.
  24. Zheng W, Simon SL. Confinement effects on the glass transition of hydrogen bonded liquids. J Chem Phys, 127, 194501 (2007). http://dx.doi.org/10.1063/1.2793787.
  25. Yi JZ, Goh SH. Miscibility and interactions in poly(n-propyl methacrylate)/ poly(vinyl alcohol) blends. Polymer, 46, 9170 (2005). http://dx.doi.org/10.1016/j.polymer.2005.07.011.
  26. He Y, Zhu B, Inoue Y. Hydrogen bonds in polymer blends. Prog Polym Sci, 29, 1021 (2004). http://dx.doi.org/10.1016/j.progpolymsci.2004.07.002.
  27. Feldstein MM, Roos A, Chevallier C, Creton C, Dormidontova EE. Relation of glass transition temperature to the hydrogen bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers: 3. Analysis of two glass transition temperatures featured for PVP solutions in liquid poly(ethylene glycol). Polymer, 44, 1819 (2003). http://dx.doi.org/10.1016/S0032-3861(03)00046-6.
  28. Kuo SW, Xu H, Huang CF, Chang FC. Significant glass-transition-temperature increase through hydrogen-bonded copolymers. J Polym Sci B, 40, 2313 (2002). http://dx.doi.org/10.1002/polb.10292.
  29. Lagaron JM, Gimenez E, Saura JJ, Gavara R. Phase morphology, crystallinity and mechanical properties of binary blends of high barrier ethylene: vinyl alcohol copolymer and amorphous polyamide and a polyamide-containing ionomer. Polymer, 42, 7381 (2001). http://dx.doi.org/10.1016/S0032-3861(01)00204-X.
  30. Park JS, Park JW, Ruckenstein E. A dynamic mechanical and thermal analysis of unplasticized and plasticized poly(vinyl alcohol)/ methylcellulose blends. J Appl Polym Sci, 80, 1825 (2001). http://dx.doi.org/10.1002/app.1278.
  31. Hassan CM, Peppas NA. Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules, 33, 2472 (2000). http://dx.doi.org/10.1021/ma9907587.
  32. Laurence C, Berthelot M. Observations on the strength of hydrogen bonding. Perspect Drug Discovery Des, 18, 39 (2000). http://dx.doi.org/10.1023/A:1008743229409.
  33. Parada LG, Cesteros LC, Meaurio E, Katime I. Miscibility in blends of poly(vinyl acetate-co-vinyl alcohol) with poly(N,Ndimethylacrylamide). Polymer, 39, 1019 (1998). http://dx.doi.org/10.1016/S0032-3861(97)00389-3.
  34. Schneider HA. Conformational entropy contributions to the glass temperature of blends of miscible polymers. J Res Natl Inst Stand Technol, 102, 229 (1997). http://www.archive.org/details/jresv102n2p229. https://doi.org/10.6028/jres.102.018
  35. Coleman MM, Painter PC. Hydrogen bonded polymer blends. Prog Polym Sci, 20, 1 (1995). http://dx.doi.org/10.1016/0079-6700(94)00038-4.
  36. Prinos J, Panayiotou C. Glass transition temperature in hydrogenbonded polymer mixtures. Polymer, 36, 1223 (1995). http://dx.doi.org/10.1016/0032-3861(95)93924-B.
  37. Painter PC, Graf JF, Coleman MM. Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends. Macromolecules, 24, 5630 (1991). http://dx.doi.org/10.1021/ma00020a023.
  38. Feng H, Feng Z, Shen L. A high resolution solid-state n.m.r. and d.s.c. study of miscibility and crystallization behaviour of poly(vinyl alcohol)poly(N-vinyl-2-pyrrolidone) blends. Polymer, 34, 2516 (1993). http://dx.doi.org/10.1016/0032-3861(93)90581-T.
  39. Zhang X, Takegoshi K, Hikichi K. High-resolution solid-state $^{13}C$ nuclear magnetic resonance study on poly(vinyl alcohol)/poly(vinylpyrrolidone) blends. Polymer, 33, 712 (1992). http://dx.doi.org/10.1016/0032-3861(92)90326-R.
  40. Fox TG. Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc, 1, 123 (1956).
  41. Gordon M, Taylor JS. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J Appl Chem, 2, 493 (1952). http://dx.doi.org/10.1002/jctb.5010020901.
  42. Couchman PR, Karasz FE. A Classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules, 11, 117 (1978). http://dx.doi.org/10.1021/ma60061a021.
  43. Kwei TK. The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures. J Polym Sci: Polym Lett Ed, 22, 307 (1984). http://dx.doi.org/10.1002/pol.1984.130220603.
  44. Atkins PW. Physical Chemistry. 3rd ed., W.H. Freeman, New York, NY (1986).
  45. Flory PJ. Principles of Polymer Chemistry. 9th ed., Cornell University Press, London, UK (1975).
  46. Painter PC, Shenoy SL, Bhagwagar DE, Fishburn J, Coleman MM. Effect of hydrogen bonding on the melting point depression in polymer blends where one component crystallizes. Macromolecules, 24, 5623 (1991). http://dx.doi.org/10.1021/ma00020a022.
  47. Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys, 28, 373 (1958). http://dx.doi.org/10.1063/1.1744141.
  48. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Bur Stand A: Phys Chem, 66A, 13 (1962). http://dx.doi.org/10.6028/jres.066A.003.
  49. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in poly(vinylidene fluoride)-poly(methyl methacrylate) mixtures. Macromolecules, 8, 909 (1975). http://dx.doi.org/10.1021/ma60048a040.

Cited by

  1. Polydepsipeptide Block-Stabilized Polyplexes for Efficient Transfection of Primary Human Cells vol.18, pp.11, 2017, https://doi.org/10.1021/acs.biomac.7b01034