DOI QR코드

DOI QR Code

TRIF Deficiency does not Affect Severity of Ovalbumin-induced Airway Inflammation in Mice

  • Kim, Tae-Hyoun (Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Dong-Jae (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Park, Jae-Hak (Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Park, Jong-Hwan (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University)
  • Received : 2014.09.02
  • Accepted : 2014.10.04
  • Published : 2014.10.31

Abstract

Allergic asthma is a chronic pulmonary inflammatory disease characterized by reversible airway obstruction, hyperresponsiveness and eosinophils infiltration. Toll-like receptors (TLRs) signaling are closely associated with asthma and have emerged as a novel therapeutic target in allergic disease. The functions of TLR3 and TLR4 in allergic airway inflammation have been studied; however, the precise role of TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF), the adaptor molecule for both TLR3 and TLR4, is not yet fully understood. To investigate this, we developed a mouse model of OVA-induced allergic airway inflammation and compared the severity of allergic airway inflammation in WT and $TRIF^-/^-$ mice. Histopathological assessment revealed that the severity of inflammation in airway inflammation in TRIF-deficient mice was comparable to that in WT mice. The total number of cells recovered from bronchoalveolar lavage fluid did not differ between WT and TRIF-deficient mice. Moreover, TRIF deficiency did not affect Th1 and Th2 cytokine production in lung tissue nor the level of serum OVA-specific IgE, $IgG_1$ and $IgG_{2c}$. These findings suggest that TRIF-mediated signaling may not be critical for the development of allergic airway inflammation.

Keywords

References

  1. To, T., S. Stanojevic, G. Moores, A. S. Gershon, E. D. Bateman, A. A. Cruz, and L. P. Boulet. 2012. Global asthma prevalence in adults: findings from the cross-sectional world health survey. BMC Public Health 12: 204. https://doi.org/10.1186/1471-2458-12-204
  2. Shifren, A., C. Witt, C. Christie, and M. Castro. 2012. Mechanisms of remodeling in asthmatic airways. J. Allergy (Cairo) 2012: 316049.
  3. Holgate, S. T. 2012. Innate and adaptive immune responses in asthma. Nat. Med. 18: 673-683. https://doi.org/10.1038/nm.2731
  4. Agrawal, D. K., and Z. Shao. 2010. Pathogenesis of allergic airway inflammation. Curr. Allergy Asthma Rep. 10: 39-48. https://doi.org/10.1007/s11882-009-0081-7
  5. Kuhl, K., and N. A. Hanania. 2012. Targeting IgE in asthma. Curr. Opin. Pulm. Med. 18: 1-5. https://doi.org/10.1097/MCP.0b013e32834deebb
  6. Yazdanbakhsh, M., P. G. Kremsner, and R. van Ree. 2002. Allergy, parasites, and the hygiene hypothesis. Science 296: 490-494. https://doi.org/10.1126/science.296.5567.490
  7. Strachan, D. P. 1989. Hay fever, hygiene, and household size. BMJ 299: 1259-1260. https://doi.org/10.1136/bmj.299.6710.1259
  8. Matricardi, P. M., F. Rosmini, S. Riondino, M. Fortini, L. Ferrigno, M. Rapicetta, and S. Bonini. 2000. Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ 320: 412-417. https://doi.org/10.1136/bmj.320.7232.412
  9. Iwasaki, A., and R. Medzhitov. 2004. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5: 987-995. https://doi.org/10.1038/ni1112
  10. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511. https://doi.org/10.1038/nri1391
  11. Sato, S., M. Sugiyama, M. Yamamoto, Y. Watanabe, T. Kawai, K. Takeda, and S. Akira. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171: 4304-4310. https://doi.org/10.4049/jimmunol.171.8.4304
  12. Kawai, T., and S. Akira. 2006. TLR signaling. Cell Death Differ. 13: 816-825. https://doi.org/10.1038/sj.cdd.4401850
  13. Kumar, H., T. Kawai, and S. Akira. 2009. Pathogen recognition in the innate immune response. Biochem. J. 420: 1-16. https://doi.org/10.1042/BJ20090272
  14. Eisenbarth, S. C., D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick, and K. Bottomly. 2002. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196: 1645-1651. https://doi.org/10.1084/jem.20021340
  15. Torres, D., A. Dieudonne, B. Ryffel, E. Vilain, M. Si-Tahar, M. Pichavant, P. Lassalle, F. Trottein, and P. Gosset. 2010. Double-stranded RNA exacerbates pulmonary allergic reaction through TLR3: implication of airway epithelium and dendritic cells. J. Immunol. 185: 451-459. https://doi.org/10.4049/jimmunol.0902833
  16. Stowell, N. C., J. Seideman, H. A. Raymond, K. A. Smalley, R. J. Lamb, D. D. Egenolf, P. J. Bugelski, L. A. Murray, P. A. Marsters, R. A. Bunting, R. A. Flavell, L. Alexopoulou, L. R. San Mateo, D. E. Griswold, R. T. Sarisky, M. L. Mbow, and A. M. Das. 2009. Long-term activation of TLR3 by poly(I:C) induces inflammation and impairs lung function in mice. Respir. Res. 10: 43. https://doi.org/10.1186/1465-9921-10-43
  17. Hollingsworth, J. W. 2nd, D. N. Cook, D. M. Brass, J. K. Walker, D. L. Morgan, W. M. Foster, and D. A. Schwartz. 2004. The role of Toll-like receptor 4 in environmental airway injury in mice. Am. J. Respir. Crit. Care Med. 170: 126-132. https://doi.org/10.1164/rccm.200311-1499OC
  18. Bortolatto, J., E. Borducchi, D. Rodriguez, A. C. Keller, E. Faquim-Mauro, K. R. Bortoluci, D. Mucida, E. Gomes, A. Christ, S. Schnyder-Candrian, B. Schnyder, B. Ryffel, and M. Russo. 2008. Toll-like receptor 4 agonists adsorbed to aluminium hydroxide adjuvant attenuate ovalbumin-specific allergic airway disease: role of MyD88 adaptor molecule and interleukin-12/interferon-gamma axis. Clin. Exp. Allergy 38: 1668-1679. https://doi.org/10.1111/j.1365-2222.2008.03036.x
  19. Hammad, H., M. Chieppa, F. Perros, M. A. Willart, R. N. Germain, and B. N. Lambrecht. 2009. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15: 410-416. https://doi.org/10.1038/nm.1946
  20. Abston, E. D., M. J. Coronado, A. Bucek, D. Bedja, J. Shin, J. B. Kim, E. Kim, K. L. Gabrielson, D. Georgakopoulos, W. Mitzner, and D. Fairweather. 2012. Th2 regulation of viral myocarditis in mice: different roles for TLR3 versus TRIF in progression to chronic disease. Clin. Dev. Immunol. 2012: 129486.
  21. Kaisho, T., K. Hoshino, T. Iwabe, O. Takeuchi, T. Yasui, and S. Akira. 2002. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int. Immunol. 14: 695-700. https://doi.org/10.1093/intimm/dxf039
  22. Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T lymphocytes. Nature 383: 787-793. https://doi.org/10.1038/383787a0
  23. Takatsu, K., S. Takaki, and Y. Hitoshi. 1994. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv. Immunol. 57: 145-190. https://doi.org/10.1016/S0065-2776(08)60673-2
  24. Wills-Karp, M. 2004. Interleukin-13 in asthma pathogenesis. Immunol. Rev. 202: 175-190. https://doi.org/10.1111/j.0105-2896.2004.00215.x
  25. Chung, F. 2001. Anti-inflammatory cytokines in asthma and allergy: interleukin-10, interleukin-12, interferon-gamma. Mediators Inflamm. 10: 51-59. https://doi.org/10.1080/09629350120054518
  26. Coffman, R. L., D. A. Lebman, and P. Rothman. 1993. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol. 54: 229-270. https://doi.org/10.1016/S0065-2776(08)60536-2
  27. Matsumoto, K., and H. Inoue. 2014. Viral infections in asthma and COPD. Respir. Investig. 52: 92-100. https://doi.org/10.1016/j.resinv.2013.08.005
  28. Nicholson, K. G., J. Kent, and D. C. Ireland. 1993. Respiratory viruses and exacerbations of asthma in adults. BMJ 307: 982-986. https://doi.org/10.1136/bmj.307.6910.982
  29. Atmar, R. L., E. Guy, K. K. Guntupalli, J. L. Zimmerman, V. D. Bandi, B. D. Baxter, and S. B. Greenberg. 1998. Respiratory tract viral infections in inner-city asthmatic adults. Arch. Intern. Med. 158: 2453-2459. https://doi.org/10.1001/archinte.158.22.2453
  30. Joshi, P., A. Shaw, A. Kakakios, and D. Isaacs. 2003. Interferon-gamma levels in nasopharyngeal secretions of infants with respiratory syncytial virus and other respiratory viral infections. Clin. Exp. Immunol. 131: 143-147. https://doi.org/10.1046/j.1365-2249.2003.02039.x
  31. Armann, J., and E. von Mutius. 2010. Do bacteria have a role in asthma development? Eur. Respir. J. 36: 469-471. https://doi.org/10.1183/09031936.00041410
  32. Korppi, M. 2009. Management of bacterial infections in children with asthma. Expert Rev. Anti. Infect. Ther. 7: 869-877. https://doi.org/10.1586/eri.09.58
  33. Johnston, S. L., F. Blasi, P. N. Black, R. J. Martin, D. J. Farrell, and R. B. Nieman. 2006. The effect of telithromycin in acute exacerbations of asthma. N. Engl. J. Med. 354: 1589-1600. https://doi.org/10.1056/NEJMoa044080
  34. Kim, Y. K., S. Y. Oh, S. G. Jeon, H. W. Park, S. Y. Lee, E. Y. Chun, B. Bang, H. S. Lee, M. H. Oh, Y. S. Kim, J. H. Kim, Y. S. Gho, S. H. Cho, K. U. Min, Y. Y. Kim, and Z. Zhu. 2007. Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma. J. Immunol. 178: 5375-5382. https://doi.org/10.4049/jimmunol.178.8.5375
  35. Delayre-Orthez, C., F. de Blay, N. Frossard, and F. Pons. 2004. Dose-dependent effects of endotoxins on allergen sensitization and challenge in the mouse. Clin. Exp. Allergy 34: 1789-1795. https://doi.org/10.1111/j.1365-2222.2004.02082.x
  36. Reed, C. E., and D. K. Milton. 2001. Endotoxin-stimulated innate immunity: A contributing factor for asthma. J. Allergy Clin. Immunol. 108: 157-166. https://doi.org/10.1067/mai.2001.116862
  37. O'Neill, L. A. 2003. Therapeutic targeting of Toll-like receptors for inflammatory and infectious diseases. Curr. Opin. Pharmacol. 3: 396-403. https://doi.org/10.1016/S1471-4892(03)00080-8
  38. Shalaby, K. H., A. Allard-Coutu, M. J. O'Sullivan, E. Nakada, S. T. Qureshi, B. J. Day, and J. G. Martin. 2013. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. J. Immunol. 191: 922-933. https://doi.org/10.4049/jimmunol.1103644
  39. Sahiner, U. M., A. Semic-Jusufagic, J. A. Curtin, E. Birben, D. Belgrave, C. Sackesen, A. Simpson, T. S. Yavuz, C. A. Akdis, A. Custovic, and O. Kalayci. 2014. Polymorphisms of endotoxin pathway and endotoxin exposure: in vitro IgE synthesis and replication in a birth cohort. Allergy. doi: 10.1111/all.12504.
  40. Hsia, B. J., G. S. Whitehead, S. Y. Thomas, K. Nakano, K. M. Gowdy, J. J. Aloor, H. Nakano, and D. N. Cook. 2014. Trif-dependent induction of Th17 immunity by lung dendritic cells. Mucosal Immunol. doi: 10.1038/mi.2014.56.