DOI QR코드

DOI QR Code

Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming

  • Cladera, Antoni (Department of Physics, University of the Balearic Islands) ;
  • Perez-Ordonez, Juan L. (School of Building Engineering and Technical Architecture, University of A Coruna) ;
  • Martinez-Abella, Fernando (Department of Construction Technology, University of A Coruna)
  • 투고 : 2014.05.07
  • 심사 : 2014.10.01
  • 발행 : 2014.10.30

초록

This paper presents the improvement of the EC-2 and EHE-08 shear strength formulations for concrete beams with shear reinforcement. The employed method is based on the genetic programming (GP) technique, which is configured to generate symbolic regression from a set of experimental data by considering the interactions among precision, accuracy, safety and simplicity. The size effect and the influence of the amount of shear reinforcement are examined. To develop and verify the models, 257 experimental tests on concrete beams from the literature are used. Three expressions of considerable simplicity, which significantly improve the shear strength prediction with respect to the formulations of the different studied codes, are proposed.

키워드

참고문헌

  1. ACI Committee 318 (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. Adebar, P. and Collins, M.P. (1996), "Shear strength of members without transverse reinforcement", Can. J. Civ. Eng., 23(1), 30-41. https://doi.org/10.1139/l96-004
  3. Anderson, N.S. and Ramirez, J.A. (1989), "Detailing of stirrup reinforcement", ACI Struct. J., 86(5), 507-515.
  4. Angelakos, D., Bentz, E.C. and Collins, M.P. (2001), "Effect of concrete strength and minimum stirrups on shear strength of large members", ACI Struct. J., 98(3), 290-300.
  5. Bairan, J.M. and Mari, A.R. (2007), "Multiaxial-coupled analysis of RC cross-sections subjected to combined forces", Eng. Struct., 29(8), 1722-1738. https://doi.org/10.1016/j.engstruct.2006.09.007
  6. Bentz, E. (2010), "MC2010: Shear strength of beams and implications of the new approaches", Fib bulletin 57: Shear and punching shear in RC and FRC elements, Salo (Italy).
  7. Bhal, N.S. (1968), Uber den Einfluss der Balkenhohe auf Schubtragfahigkeit von einfeldrigen Stahlbetonbalken mit und ohne Schubbewehrung, Uber Den Einfluss Der Balkenhohe Auf Schubtragfahigkeit Von Einfeldrigen Stahlbetonbalken Mit Und Ohne Schubbewehrung.
  8. Bresler, B. and Scordelis, A.C. (1966), "Shear strength of reinforced concrete beams-Series III", SESM Report, (2).
  9. Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI Journal, 60(1), 51-74.
  10. Cladera, A. and Mari, A.R. (2007), "Shear strength in the new Eurocode 2. A step forward?", Struct. Concr., 8(2), 57-66. https://doi.org/10.1680/stco.2007.8.2.57
  11. Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527. https://doi.org/10.1016/j.engstruct.2005.04.010
  12. Cladera, A. and Mari, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: Beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010
  13. Cladera, A. and Mari, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: Beams with stirrups", Eng. Struct., 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011
  14. Collins, M.P. (1998), "Procedures for calculating the shear response of reinforced concrete elements: A Discussion", J. Struct. Eng., 124(12), 1485-1488. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1485)
  15. Collins, M.P. (2001), Evaluation of Shear Design Procedures for Concrete Structures, Report Prepared for the CSA Technical Committee on Reinforced Concrete Design, Ottawa, Canada.
  16. Collins, M.P., Mitchell, D. and Bentz, E.C. (2008), "Shear design of concrete structures", Struct. Eng., 86(10), 32-39.
  17. Collins, M.P. and Kuchma, D. (1999), "How safe are our large, lightly reinforced concrete beams, slabs, and footings?", ACI Struct. J., 96(4), 482-490.
  18. Comision Permanente del Hormigon (2008), EHE-2008. Instruccion De Hormigon Estructural, Ministerio de Fomento, Madrid, Espana.
  19. Da Silva, W.R.L. and Stemberk, P. (2013), "Genetic-fuzzy approach to model concrete shrinkage", Comput. Concr., 12(2), 109-129. https://doi.org/10.12989/cac.2013.12.2.109
  20. Darwin, C. (1859), On the Origin of Species by Means of Natural Selection, Cambridge University Press, Cambridge, UK.
  21. Dorado, J., Rabunal, J.R., Rivero, D., Santos, A. and Pazos, A. (2002), "Automatic recurrent ANN rule extraction with genetic programming", In Neural Networks, IJCNN'02, Proceedings of the 2002 International Joint Conference, 2, 1552-1557.
  22. Elzanaty, A.H., Nilson, A.H. and Slate, F.O. (1986), "Shear capacity of reinforced concrete beams using high-strength concrete", J. Am.Concrete Inst., 83(2), 290-296.
  23. Etxeberria, M., Mari, A.R. and Vazquez, E. (2007), "Recycled aggregate concrete as structural material", Mater. Struct., 40(5), 529-541. https://doi.org/10.1617/s11527-006-9161-5
  24. European Committee for Standardization (CEN). (2002), Eurocode 2: Design of Concrete Structures: Part 1: General Rules and Rules for Buildings, European Committee for Standardization.
  25. Federation International du Beton. (2012), Model Code 2010, Final Draft, Federation International du Beton,
  26. Frosch, R.J. (2000), "Behavior of large-scale reinforced concrete beams with minimum shear reinforcement", ACI Struct. J., 97(6), 814-820.
  27. Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z
  28. Gandomi, A.H., Mohammadzadeh, S.D., Perez-Ordonez, J.L. and Alavi, A.H. (2014), "Linear genetic programming for shear strength prediction of reinforced concrete beams without stirrups", Applied Soft Comp., 19, 112-120. https://doi.org/10.1016/j.asoc.2014.02.007
  29. Gonzalez-Fonteboa, B. and Martinez-Abella, F. (2007), "Shear strength of recycled concrete beams", Constr. Build. Mater., 21(4), 887-893. https://doi.org/10.1016/j.conbuildmat.2005.12.018
  30. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI (USA).
  31. Johnson, M.K. and Ramirez, J.A. (1989), "Minimum shear reinforcement in beams with higher strength concrete", ACI Struct. J., 86(4), 376-382.
  32. Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008
  33. Karayiannis, C.G., and Chalioris, C.E. (1999), "Experimental investigation of the influence of stirrups on the shear failure mechanism of reinforced concrete beams", Proceedings of the 13th Hellenic Conference on Concrete, 1, 133-141.
  34. Keskin, R.S.O. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concr., 12(5), 697-715. https://doi.org/10.12989/cac.2013.12.5.697
  35. Kong, P.Y.L. and Rangan, B.V. (1998), "Shear strength of high-performance concrete beams", ACI Struct. J., 95(6), 677-688.
  36. Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press Cambridge, USA.
  37. Krefeld, W.J. and Thurston, C.W. (1966), "Studies of the shear and diagonal tension strength of simply supported reinforced concrete beams", ACI Journal, 63(4), 451-476.
  38. Leonhardt, F. and Walther, R. (1962), "Schubversuche an Einfeldrigen Stahlbeton-Balken mit und ohne Schubbewehrung zur Ermittlung der Schubtragfhigkeit und der Oberen Schubspannungsgrenze", Heft 151, Deutcher Ausschuss Fr Stahlbeton, 66.
  39. Lubell, A., Sherwood, T., Bentz, E. and Collins, M. (2004), "Safe shear design of large, wide beams", Concr. Int., 26(1), 66-78.
  40. Mari, A. R. and Cladera, A. (2006), "Calculo a cortante de vigas de hormigon armado y pretensado: una propuesta de calculo normativo", Hormigon y Acero, 242, 51-63.
  41. Mari, A., Cladera, A., Oller, E. and Bairan, J. (2014), "Shear design of FRP reinforced concrete beams without transverse reinforcement", Compos Part B: Eng, 57, 228-241. https://doi.org/10.1016/j.compositesb.2013.10.005
  42. Mattock, A.H. and Wang, Z. (1984), "Shear strength of reinforced concrete members subject to high axial compressive stress", Journal of the American Concrete Institute, 81(3), 287-298.
  43. McGormley, J.C., Cleary, D.B. and Ramirez, J.A. (1996), "The performance of epoxy-coated shear reinforcement", ACI Struct. J., 93(5), 531-537.
  44. Mphonde, A.G. and Frantz, G.C. (1985), "Shear tests of high-and low-strength concrete beams with stirrups", High-Strength Concrete, 179-196.
  45. Navarro Gregori, J., Miguel Sosa, P., Fernandez Prada, M.A. and Filippou, F.C. (2007), "A 3D numerical model for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion loading", Eng. Struct., 29(12), 3404-3419. https://doi.org/10.1016/j.engstruct.2007.09.001
  46. Ozcebe, G., Ersoy, U. and Tankut, T. (1999), "Evaluation of minimum shear reinforcement requirements for higher strength concrete", ACI Struct. J., 96(3), 361-368.
  47. Park, W.J., Noguchi, T. and Lee, H.S. (2013), "Genetic algorithm in mix proportion design of recycled aggregate concrete", Comput. Concr., 11(3), 183-199. https://doi.org/10.12989/cac.2013.11.3.183
  48. Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new Genetic Programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Software, 50(1), 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008
  49. Perez, J.L., Cladera, A., Rabunal, J.R. and Abella, F.M. (2010), "Optimal adjustment of EC-2 shear formulation for concrete elements without web reinforcement using Genetic Programming", Eng. Struct., 32(11), 3452-3466. https://doi.org/10.1016/j.engstruct.2010.07.006
  50. Placas, A. and Regan, P.E. (1971), "Shear failure of reinforced concrete beams", J Am. Concrete Inst, 68(10), 763-773.
  51. Rajagopalan, K. and Ferguson, P.M. (1968), "Exploratory shear tests emphasizing percentage of longitudinal steel", ACI Journal, 65(8), 634-638.
  52. Regan, P. (1993), "Research on shear: a benefit to humanity or a waste of time? ", Struct. Eng., 71, 337-337.
  53. Roller, J.J. and Russell, H.G. (1990), "Shear strength of high-strength concrete beams with web reinforcement", ACI Struct. J., 87(2), 191-198.
  54. Sarsam, K.F. and Al-Musawi, J.M.S. (1992), "Shear design of high-and normal strength concrete beams with web reinforcement", ACI Struct. J., 89(6), 658-664.
  55. Shah, A. and Ahmad, S. (2007), "An experimental investigation into shear capacity of high strength concrete beams", Asian Journal of Civil Engineering (Building and Housing), 8(5), 549-562.
  56. Siess, C.P. (1960), "Research, building codes, and engineering practice", J. Am. Concrete Inst., 56(11), 1105-1122.
  57. Sigrist, V. (2012), "The future of standardization-Guidelines for the development of user-friendly design codes", Proceedings.56.BetonTage, Neu-Ulm, BFT International, 78(2), 166-167.
  58. Swamy, R.N. and Andriopoulos, A.D. (1974), "Contribution of aggregate interlock and dowel forces to the shear resistance of reinforced beams with web reinforcement", Shear in Reinforced Concrete, 129-166.
  59. Tan, K.H., Teng, S., Kong, F.K. and Lu, H.Y. (1997), "Main tension steel in high strength concrete deep and short beams", ACI Struct. J., 94(6), 752-768.
  60. Tan, K., Kong, F., Teng, S. and Guan, L. (1995), "High-strength concrete deep beams with effective span and shear span variations", ACI Struct. J., 92(4), 395-405.
  61. Tompos, E.J. and Frosch, R.J. (2002), "Influence of beam size, longitudinal reinforcement, and stirrup effectiveness on concrete shear strength", ACI Struct. J., 99(5), 559-567.
  62. Tsai, H.C. (2013), "Polynomial modeling of confined compressive strength and strain of circular concrete columns", Comput. Concr., 11(6), 603-620. https://doi.org/10.12989/cac.2013.11.6.603
  63. Tsai, H.C. and Pan, C.P. (2013), "Improving analytical models of circular concrete columns with genetic programming polynomials", Genet. Program. Evol. M., 14(2), 221-243. https://doi.org/10.1007/s10710-012-9176-3
  64. Tsai, H.C. (2011), "Using weighted genetic programming to program squat wall strengths and tune associated formulas", Eng. Appl. Artif. Intel., 24(3), 526-533. https://doi.org/10.1016/j.engappai.2010.08.010
  65. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI J., 83(2), 219-231.
  66. Walraven, J.C. (1981), "Fundamental analysis of aggregate interlock", ASCE J. Struct. Div., 107(11), 2245-2270.
  67. Yoon, Y., Cook, W.D. and Mitchell, D. (1996), "Minimum shear reinforcement in normal, medium, and high-strength concrete beams", ACI Struct. J., 93(5), 576-584.
  68. Yu, Q. and Bazant, Z.P. (2011), "Can stirrups suppress size effect on shear strength of RC beams?", J. Struct. Eng., 137(5), 607-617. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000295
  69. Zararis, P.D. and Papadakis, G. (1999), "Influence of the arrangement of reinforcement on the shear strength of RC beams", Proceedings of the 13th Hellenic Conference on Concrete, 1, 110-119.

피인용 문헌

  1. A genetic programming predictive model for parametric study of factors affecting strength of geopolymers vol.5, pp.104, 2015, https://doi.org/10.1039/C5RA16286F
  2. Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming vol.106, 2016, https://doi.org/10.1016/j.conbuildmat.2015.12.136
  3. Addition of biomass ash in concrete: Effects on E-Modulus, electrical conductivity at early ages and their correlation vol.157, 2017, https://doi.org/10.1016/j.conbuildmat.2017.09.179
  4. The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams vol.17, pp.6, 2016, https://doi.org/10.1002/suco.201500214
  5. Analytical and genetic programming model of compressive strength of eco concretes by NDT according to curing temperature vol.144, 2017, https://doi.org/10.1016/j.conbuildmat.2017.03.123
  6. Prediction of creep in concrete using genetic programming hybridized with ANN vol.21, pp.5, 2014, https://doi.org/10.12989/cac.2018.21.5.513
  7. A punching shear mechanical model for reinforced concrete flat slabs with and without shear reinforcement vol.166, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2018.03.079
  8. Querkraftmodell für bestehende Stahlbetonbauteile mit aufgebogenen Längsstäben vol.115, pp.10, 2020, https://doi.org/10.1002/best.202000008
  9. Mechanics-Guided Genetic Programming Expression for Shear-Strength Prediction of Squat Reinforced Concrete Walls with Boundary Elements vol.146, pp.11, 2014, https://doi.org/10.1061/(asce)st.1943-541x.0002734
  10. One‐way shear strength of wide reinforced concrete members without stirrups vol.22, pp.2, 2014, https://doi.org/10.1002/suco.202000034
  11. A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2014, https://doi.org/10.12989/cac.2021.27.4.333
  12. Failure Load and Collapse Mode of an RC Beam in a Large Collapsed Roof vol.26, pp.3, 2014, https://doi.org/10.1061/(asce)sc.1943-5576.0000583