References
- D. D. Adams, Absolutely pure modules, Ph.D. Thesis, University of Kentucky, Department of Mathematics, 1978.
- E. Enochs, Shortening filtrations, Sci. China Math. 55 (2012), no. 4, 687-693. https://doi.org/10.1007/s11425-011-4334-2
- E. Enochs and S. Estrada, Projective representations of quivers, Comm. Algebra 33 (2005), no. 10, 3467-3478. https://doi.org/10.1081/AGB-200058181
- E. Enochs and S. Estrada, Relative homological algebra in the category of quasi-coherent sheaves, Adv. Math. 194 (2005), no. 2, 284-295. https://doi.org/10.1016/j.aim.2004.06.007
- E. Enochs, S. Estrada, and G. Rozas, Injective representations of innite quivers. applications, Canad. J. Math. 61 (2009), no. 2, 315-335. https://doi.org/10.4153/CJM-2009-016-2
- E. Enochs, L. Oyonarte, and B. Torrecillas, Flat covers and flat representations of quivers, Comm. Algebra 32 (2004), no. 4, 1319-1338. https://doi.org/10.1081/AGB-120028784
- S. Estrada and S. Ozdemir, Relative homological algebra in categories of representation of quivers, Houston J. Math. 39 (2013), no. 2, 343-362.
- E. Hosseini, Pure injective representations of quivers, Bull. Korean Math. Soc. 50 (2013), no. 2, 389-398. https://doi.org/10.4134/BKMS.2013.50.2.389
- B. H. Maddox, Absolutely pure modules, Proc. Amer. Math. Soc. 18 (1967), no. 1, 155-158. https://doi.org/10.1090/S0002-9939-1967-0224649-5
- C. Megibben, Absolutely pure modules, Proc. Amer. Math. Soc. 26 (1970), no. 4, 561-566. https://doi.org/10.1090/S0002-9939-1970-0294409-8
- S. Park, Injective and projective properties of representations of quivers with n edges, Korean J Math. 16 (2008), no. 3, 323-334.
- K. Pinzon, Absolutely pure covers, Comm. Algebra 36 (2008), no. 6, 2186-2194. https://doi.org/10.1080/00927870801952694
- B. Stenstrom, Coherent rings and Fp-injective modules, J. London Math. Soc. 2 (1970), 323-329.