DOI QR코드

DOI QR Code

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends

  • Diaz Lantada, A. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • Lafont Morgado, P. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • Munoz-Guijosa, J.M. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • Munoz Sanz, J.L. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • Echavarri Otero, J. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • Chacon Tanarro, E. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid) ;
  • De la Guerra Ochoa, E. (Machine Engineering Research Group - Higher Technical School of Industrial Engineering Universidad Politecnica de Madrid)
  • Received : 2012.04.24
  • Accepted : 2013.09.23
  • Published : 2014.10.25

Abstract

The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.

Keywords

References

  1. Abadie, J., Chaillet, N. and Lexcellent, C. (2002), "An integrated shape memory alloy micro-actuator controlled by thermoelectric effect", Mechatronics, 14(7), 757-775.
  2. Anton, S.R., Erturk, A. and Inman, D.J. (2010), "Multifunctional self-charging structures using piezoceramics and thin-film batteries", Smart Mater. Struct., 19, 115021. https://doi.org/10.1088/0964-1726/19/11/115021
  3. Anton, S.R. and Inman, D.J. (Advisor) (2008), Baseline free and self-powered structural health monitoring, Virginia Polytechnic State University.
  4. Anton, S.R. and Sodano, H.R. (2007), "A review of power harvesting using piezoelectric materials", Smart Mater. Struct., 16(3), doi:10.1088/0964-1726/16/3/R01.
  5. Asby, M.F. (1999), Materials selection in mechanical design, Butterworth-Heinemann Burlington, Massachusetts.
  6. Bachand, G.D. and Montemagno, C. (2000), "Constructing organic/inorganic NEMS devices powered by biomolecular motors", Biomed. Microdevices, 2(3), 179-184. https://doi.org/10.1023/A:1009924327649
  7. Bar-Cohen, Y. (2004), Biologically inspired intelligent robots, SPIE Press.
  8. Bar-Cohen, Y. (2006), Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential and challenges, SPIE Press, 2nd Ed., Washington.
  9. Bautista Paz, E., Ceccarelli, M., Echavarri Otero, J. and Munoz Sanz, J.L. (2010), "A brief illustrated History of machines and mechanisms", History Mechanism and Machine Sci., 10, Springer.
  10. Bellin, I., Kelch, S., Langer, R. and Lendlein, A. (2006), "Polymeric triple-shape materials", Proceedings of the National Academy of Science, 103, 18043-18047. https://doi.org/10.1073/pnas.0608586103
  11. Bian, L., Wen, Y., Li, P., Gao, Q. and Zheng, M. (2009), "Magnetoelectric transducer with high quality factor for wireless power receiving", Sensor Actuat. A-Phys., 150(2), 207-211. https://doi.org/10.1016/j.sna.2009.01.003
  12. Bourouina, T., Lebrasseur, E., Reyne, G., Fujita, H., Ludwig, A., Quandt, E., Muro, H., Oki, T. and Asaoka, A. (2002), "Integration of two degree of freedom magnetostrictive actuation and piezoresistive detection: Application to a two dimensional optical scanner", J. Microelectromech. S., 11(4), 355-361. https://doi.org/10.1109/JMEMS.2002.800561
  13. Castro, H.F., Lanzeros Mendez, S. and Rocha, J.G. (2006) "Separation of the pyro-and piezoelectric response of electroactive polymers for sensor applications", Mater. Sci. Forum, 514-516, 202-206. https://doi.org/10.4028/www.scientific.net/MSF.514-516.202
  14. Cerutti, S. (2008), "Multivariate, multiorgan and multiscale integration of information in biomedical signal processing", Proceedings of the International Conference on Biomedical Electronics and Devices Biostec 2008-Biodevices, Keynote Lecture.
  15. Chang, C., Ho, M., Song, G., Mo, Y.L. and Li, H. (2009), "Feasibility study of self-heating concrete utilizing carbon nanofiber heating elements", Smart Mater. Struct., 18(12), doi:10.1088/0964-1726/18/12/127001.
  16. Colloza, A. (2007), Fly like a bird, IEEE Spectrum, Flapping wings could revolutionize aircraft design.
  17. Diaz Lantada, A. (2012), Handbook on active materials for medical devices: Advances and applications, PAN Stanford Publishing.
  18. Diaz Lantada, A. and Lafont, P. (Advisor) (2009), Methodology for the structured development of medical devices based on smart polymers as sensors and actuators, PhD Thesis, Universidad Politecnica de Madrid.
  19. Diaz Lantada, A., Lafont Morgado, P., Del Olmo, H.H., Echavari, J., Lorenzo-Yustos, H., Munoz-Guijosa, J.M., Munoz Garcia, J. and Munoz Sanz, J.L. (2009), "Modelling and trials of pyroelectric sensors for improving its applications for biodevices", Proceedings of the International Conference on Biomedical Electronics and Devices-Biodevices 2009.
  20. Diaz Lantada, A., Lafont Morgado, P., Munoz Garcia, J., Munoz Sanz, J.L., Munoz-Guijosa, J.M. and Echavarri Otero, J. (2010), "Intelligent structures based on the improved activation of shape memory polymers using Peltier cells", Smart Mater. Struct., 19(5), doi:10.1088/0964-1726/19/5/055022.
  21. Dosch, J.J., Inman, D.J. and Garcia, E. (1992), "A self-sensing piezoelectric actuator for collocated control", J. Intel. Mat. Syst. Str., 3(1), 166-185. https://doi.org/10.1177/1045389X9200300109
  22. Duenas, T., Sehrbrock, A. Lohndorf, M., Ludwig, A., Grunberg, P. and Quandt, E. (2002), "Micro-sensor coupling magnetostriction and magnetoresistive phenomena", J. Magnetism Magnetic Mater., 242-245, 1132-1135. https://doi.org/10.1016/S0304-8853(01)00975-1
  23. Dunsch, R. (2007), Models for piezoelectric sensor-actuator systems, PhD Thesis, EPFL.
  24. European Commission of Energy (2005), "Eco-design of energy-using product-Eco-design EU Directive".
  25. Franzke, L. (2013), Touch responsive electroluminescent loudspeaker, Materiability Research Network (http://materiability.com).
  26. Frecker, M. (2003), "Recent advances in optimization of smart structures and actuators", J. Intel. Mat. Syst. Str., 14(4-5), 207-216. https://doi.org/10.1177/1045389X03031062
  27. Gao, X.Y. and Huang, W.M. (2006), "Shape memory motor directly powered by solar energy for space missions", Proceedings of the 2006 IEEE Conference on Mechatronics and Automation.
  28. Gao, D., Sturm, M. and Mo, Y.L. (2009), "Electrical resistance of carbon-nano fiber concrete", Smart Mater. Struct., 18, 095039. https://doi.org/10.1088/0964-1726/18/9/095039
  29. Ghosh, S.K. (2009), Self-healing materials: Fundamentals, design strategies and applications, Wiley-VCH Verlag GmbH & Co., Weinheim.
  30. Gibbs, M.R.J. (2005), "Applications of magmems", J. Magnetism Magnetic Mater., 290-291, 1298-1303, Proceedings of the Joint European Magnetic Symposia (JEMS' 04). https://doi.org/10.1016/j.jmmm.2004.11.572
  31. Gu, H., Song, G., Dhonde, H., Mo, Y.L. and Yan, S. (2006), "Concrete early age strength monitoring using embedded piezoelectric transducers", Smart Mater. Struct., 15, 1837-1845. https://doi.org/10.1088/0964-1726/15/6/038
  32. Guemes, A. (2006), "Structural health monitoring", Proceedings of the 3rd European Workshop-DEStech Publications Inc., Lancaster, Pennsylvania.
  33. Guyomar, D. and Lallart, M. (2009), "Mechanical to electrical energy conversion enhancement and self-powered wireless applications", Proceedings of the IV ECCOMAS Thematic Conference on Smart Materials and Structures Porto, Portugal.
  34. Hafez, M. (2006), Polymer based actuators as artificial muscles, FSRM Training in Microsystems Course, Teaching Resources, Zurich.
  35. Han, B., Yu, X. and Kwon, E. (2009), "A self-sensing carbon nanotube/cement composite for traffic monitoring", Nanotechnology, 20(44), doi:10.1088/0957-4484/20/44/445501.
  36. Hassan, M.R., Scarpa, F. and Mohamed, N.A. (2009), "In-plane tensile behavior of shape memory alloy honeycombs with positive and negative Poisson's ratio", J. Intel. Mat. Syst. Str., 20(8), 897-905. https://doi.org/10.1177/1045389X08099605
  37. Hiroki, G., Mami, T., Kentaro, H., Jiang, Z., Hidetoshi, M., Yoshikatsy, T., Seiichi, O. and Seiji, C. (1998), "Urethral valve using shape memory alloy actuators. Development of induction-heating system", Nippon Kikai Gakkai Robotikusu. Mekatronikusu Koenkai Koen Ronbunshu, 2AII3.3(1)-2AII3.3(4).
  38. Huefner, S. (2006), "Nanobiosensors" (http://www.chem.usu.edu).
  39. Hull, P.V., Canfield, S.L. and Carrington, C. (2004) "A radiant energy-powered shape memory alloy actuator", Mechatronics, 14(7), 737-859. https://doi.org/10.1016/j.mechatronics.2004.01.003
  40. Ihn, J.B. and Chang, F.K. (2008), "Pitch-catch active sensing methods in structural health monitoring for aircraft structures", Struct.Health Monit., 7(5), 5-19. https://doi.org/10.1177/1475921707081979
  41. Jacot, A.D., Ruggeri, R.T. and Clingman, D.J. (2000), Shape memory alloy device and control method, The Boeing Company, Patent Document, US 6499952.
  42. Jacot, A.D. and Clingman, D.J. (2000), "Shape memory alloy consortium and demonstration", Proceedings of the 6th SPIE Smart Structures and Materials Symposium.
  43. Janocha, H. and Kuhnen, K. (2009), "Solid-state actuators with inherent sensory capabilities", Proceedings of the IV ECCOMAS Thematic Conference on Smart Materials and Structures, SMART' 09 Porto, Portugal.
  44. Kaiser, W. and Konig, W. (2006), Geschichte des Ingenieurs. Ein Beruf in sechs Jahrtausenden, Carl Hanser Verlag Munchen, Germany.
  45. Kesselring, F. (1951), Bewertung von Konstruktionen, VDI Verlag Dusseldorf, Germany.
  46. Kesselring, F. (1954), Technische Kompositionslehre, Springer Berlin, Germany.
  47. Lelieveld, C.M.J.L. (2013), Smart materials for the realization of an adaptive building component, Ph.D. doctoral Thesis, Delft University of Technology.
  48. Lelieveld, C.M.J.L. and Jansen, K.M.B. (2013), "Design and thermal testing of smart composite structure for architecture applications", Proceedings of the 6th ECCOMAS Conference on Smart Structures and Materials.
  49. Lelieveld, C.M.J.L. and Voorbij, A.I.M. (2008), "Dynamic material application for architectural purposes", Adv. Science Technol., 56, 595-600. https://doi.org/10.4028/www.scientific.net/AST.56.595
  50. Leng, J.S. (2007), "Electrical conductivity of shape memory polymer embedded with micro Ni chains", Appl. Phys. Lett., 91, 014104. https://doi.org/10.1063/1.2754644
  51. Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J., Liu, N., Phee, S.Y. and Du, S.Y. (2008), "Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon black composite", Appl. Phys. Lett., 92(20), 206101. https://doi.org/10.1063/1.2927304
  52. Leng, J.S., Lan, X., Liu, Y. and Du, S.Y. (2009), "Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders", Smart Mater. Struct., 19, 074003.
  53. Leng, J.S., Lu, H., Liu, Y. and Du, S.Y. (2007), "Electro-active shape memory polymer filled with nanocarbon particles and short carbon fibers", Appl. Phys. Lett., 91, 144105. https://doi.org/10.1063/1.2790497
  54. Li, P., Gu, H., Song, G., Zheng, R. and Mo, Y.L. (2010), "Concrete structural health monitoring using piezoceramic-based wireless sensor networks", Smart Struct. Syst., 6(5), 731-748. https://doi.org/10.12989/sss.2010.6.5_6.731
  55. Li, S. and Lipson, H. (2009), "Vertical-stalk flapping-leaf generator for parallel wind energy harvesting", Proceedings of the ASME/AIAA Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2009.
  56. Li, S., Yuan, J., and Lipson, H. (2011), "Ambient wind energy harvesting using cross-flow fluttering", J. Appl. Phys., 109(2), 026104. https://doi.org/10.1063/1.3525045
  57. Liu, Y., Lu, H., Lan, X. and Leng, J.S. (2009), "Review of electro-activate shape-memory polymer composite", Compos. Sci. Technol., 69(13), 2064-2068. https://doi.org/10.1016/j.compscitech.2008.08.016
  58. Luo, Y., Takagi, T., Maruyama, S. and Yamada, M. (2000), "A shape memory alloy actuator using Peltier modules and R-phase transition", J. Intel. Mat. Syst. Str., 12, 721-728.
  59. Lyshevski, L.E. (2003), "Nanoactuators: Novel synchronous reluctance nanomachines", IEEE Nano 2003, 2, 295-298.
  60. Matousek, R. (1957), Konstruktionslehren des allgemeinen Maschinenbaus, Springer Berlin, Germany.
  61. Mavroidis, C., Bar-Cohen, Y. and Bouzit, M. (2006), "Haptic interfaces using electrorheological fluids", in Bar-Cohen Y, "Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential and challenges", SPIE Press, 2nd Ed., Washington.
  62. Mide Technology, "Volture TM Vibration energy harvester & Volture TM Solar energy harvester" (www.mide.com/products/volture)
  63. Mohr, R., Kartz, K., Wiegel, T., Lucka-Gabor, M., Moneke, M. and Lendlein, A. (2006), "Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers", Proceedings of the National Academy of Science, 103, 3540-3545. https://doi.org/10.1073/pnas.0600079103
  64. Montemango, C., Bachand, G.D., Stelick, S. and Bachand, M. (1999), "Constructing biological motor powered nanomechanical devices", Nanotechnology, 10, 225-231. https://doi.org/10.1088/0957-4484/10/3/301
  65. Muller, C.W., Pfeifer, R., El-Kashef, T., Hurschler, C., Herzog, D., Oszwald, M., Haasper, C., Krettek, C. and Gosling, T. (2010), "Electromagnetic induction heating of an orthopaedic nickel-titanium shape memory device", J. Orthop. Res., 28(12), 1671-1676. https://doi.org/10.1002/jor.21171
  66. Niemann, G. (1950, 1962, 1975), Maschinenelemente, Springer Berlin, Germany.
  67. Olmi, C., Song, G. and Mo, Y.L. (2007), "An innovative and multi-functional smart vibration platform", Smart Mater. Struct., 16(4), 1302-1309. https://doi.org/10.1088/0964-1726/16/4/043
  68. Park, G., Ruggiero, E. and Inman, D.J. (2002), "Dynamic testing of inflatable structures using smart materials", Smart Mater. Struct., 11(1), 147-155. https://doi.org/10.1088/0964-1726/11/1/317
  69. Park, G., Muntges, D.E. and Inman, D.J. (2001), Self-monitoring and self-healing jointed structures, Center for Intelligent Material Systems and Structures-Virginia Polytechnic Institute and State University.
  70. Peairs, D.M., Park, G. and Inman, D.J. (2004), "Practical issues of activating self-repairing bolted joints", Smart Mater. Struct., 13(6), 1414-1423. https://doi.org/10.1088/0964-1726/13/6/012
  71. Porfiri, M. (2009), "An electromechanical model for sensing and actuation of ionic polymer metal composites", Smart Mater. Struct., 18, 015056.
  72. Razumiene, J., Gureviciene, V., Barkauskas, J., Bukauskas, V. and Setkus, A. (2009), "Novel combined template for amperometric biosensors with changeable selectivity", Proceedings of the 2nd International Conference on Biomedical Electronics and Devices-Biodevices 2009, Porto, Portugal.
  73. Ribeiro, C., Gomes, P.J., Ribeiro, P.A. and Raposo, M. (2009), "Polymeric film sensors based on PAH-PAZO ionic self-assembled multi-nanolayers", Proceedings of the 2nd International Conference on Biomedical Electronics and Devices-Biodevices 2009, Porto, Portugal.
  74. Rocco, M.C. and Bainbridge, W.S. (2002), Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology and cognitive science, NSF/DOC sponsored report.
  75. Roozenburg, N. and Eeckels, J. (1995), Product design: fundamentals and methods, John Wiley & Sons New York, USA.
  76. Sanchez, A.M., Prieto, R., Laso, M. and Riesgo, T. (2008), "A piezoelectric minirheometer for measuring the viscosity of polymer microsamples", IEEE T. Ind. Electron., 55(1), 427-435. https://doi.org/10.1109/TIE.2007.910528
  77. Seesing, D. (2010), Symbiosis concept vehicle, Energy Efficient Alliance-Pilkington Vehicle Design Award.
  78. Sokolov, A., Apodaca, M.M., Grzybowski, B.A. and Aranson, I.S. (2009), "Swimming bacteria power microscopic gears", PNAS, 107(3), 969-974.
  79. Song, G., Gu, H., Mo, Y.L., Hsu, T.T.C. and Dhonde, H. (2007), "Concrete structural health monitoring using piezoceramic transducers", Smart Mater. Struct., 16(4), 959-968. https://doi.org/10.1088/0964-1726/16/4/003
  80. Song, G., Gu, H. and Mo, Y.L. (2008), "Smart aggregates: Multi-functional sensors for concrete structures-A tutorial and a review", Smart Mater. Struct., 17(3), 1-17.
  81. Song, G., Mo, Y.L., Otero, K. and Gu, H. (2006), "Health monitoring and rehabilitation of a concrete structure using intelligent materials", Smart Mater. Struct., 15(2), 309-314. https://doi.org/10.1088/0964-1726/15/2/010
  82. Soong, R.K., Bachand, G.D., Neves, H.P., Olkhovets, A.G., Craighead, H.G. and Montemagno, C.D. (2000), Science, 290(5496), 1555-1558. https://doi.org/10.1126/science.290.5496.1555
  83. Sterzl, T., Winzek, B., Quandt, E., Mennicken, M., Nagelsdiek, R., Keul, H. and Hoecker, H. (2003), "Bistable shape memory thin film actuators", Proceedings of the SPIE-Conference on Smart Structures and Materials 2003: Active Materials-Behavior and Mechanics, 5053(101).
  84. Takashima, K., Rossitera, J. and Mukaia, T. (2010), "Mc Kibben artificial muscle using shape-memory polymer", Sensor. Actuat. A-Phys., 164, 116-124. https://doi.org/10.1016/j.sna.2010.09.010
  85. Tschochner, H. (1957), Konstruieren und Gestalten, Girardet Essen, Germany.
  86. Ulrich, K. and Eppinger, S. (2007), Product design and development, Mc-Graw Hill / Irwin 4th Ed., New York, USA.
  87. Wakasa, Y., Watanabe, Y., Yoshida, A., Tanaka, T. and Ashaki, T. (2008), "Response improvement of shape memory alloy actuators with Peltier elements", Proceedings of the 2008 IEEE International Conference on Mechatronics and Automation.
  88. Warwick, K. (2008), "Outthinking and enhancing biological brains", Proceedings of the International Conference on Biomedical Electronics and Devices Biostec 2008-Biodevices, Keynote Lecture.
  89. Wilson, T., Small IV, W., William, B.J., Bearinger, J.P. and Maitland, D.J. (2005), "Shape memory polymer therapeutic devices for stroke", Smart Medical and Biomedical Sensor Technology III. Proceedings of the SPIE, 6007, 157-164.
  90. Winzek, B., Sterzl, T., Rumpf, H. and Quandt, E. (2003)m "Composites of different shape memory alloys and polymers for complex actuator motions", J. de Physique, 4(112), 1163-1168.
  91. Zupan, M., Asby, M.F., Fleck, N.A. (2002), "Actuator classification and selection-The development of a database", Adv. Eng. Mater., 4(12), 933-940. https://doi.org/10.1002/adem.200290009

Cited by

  1. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers vol.9, pp.10, 2017, https://doi.org/10.3390/polym9100496
  2. Web based evaluation of earthquake damages for reinforced concrete buildings vol.13, pp.4, 2014, https://doi.org/10.12989/eas.2017.13.4.387