DOI QR코드

DOI QR Code

Hopper type WDM을 이용한 단일모드 FBG(Fiber Bragg Grating)음향센서 트랜스듀서 개발연구

A Study on The transducer of acoustic sensor to be Single-mode FBG using Hopper Type WDM be in the Making

  • 투고 : 2014.05.13
  • 심사 : 2014.09.26
  • 발행 : 2014.10.25

초록

최근 국내에서 개발된 광섬유 격자소자(FBG: Fiber Bragg Grating)를 이용하여, 3종의 Hopper type WDM FBG Acoustic Transducer를 설계 및 제작 하였다. 제작된 3종류의 Hopper type WDM FBG Acoustic Transducer는 기존의 광섬유 센서가 지니고 있는 우수한 장점들을 지니고 있을 뿐만 아니라, sensor arm 구성이 간단하여 실용화에 큰 장점을 지니고 있다. 제작된 3종류의 Hopper type WDM FBG Acoustic Transducer 는 주파수 특성이 10 Hz~18 kHz 대역에서 음파 검출이 가능하였고, 트랜스듀서의 최적 공진 조건을 이용하여 최대 8.6 m 거리까지 신호 검출이 가능하였다. 특히, 기존의 음향 센서를 대신하여 전기적 잡음이 많고, 열악한 환경에서 저 주파수 신호 검출에 실용화를 기대할 수 있고, 센서 어레이(array)시스템 구성을 통하여 고감도 및 다중점 음파 검출 시스템으로 발전될 수 있다.

We have designed and made three kinds of FBG(Fiber Bragg Grating) Acoustic Transducer using Hopper type WDM on the use of recently developed FBG in Korea. The newly designed three kinds of FBG Acoustic Transducer using Hopper type WDM have an excellent merit of practical use with simple structure of sensors arm as well as the merit with existing fiber sensors. It was possible to detect sound waves in the range of 10 Hz to 18 kHz through the newly designed three kinds of FBG Acoustic Transducer and also, possible to detect its signal within the maximum range of 8.6 m by the use of most suitable resonance condition of the transducer. Especially, we can expect the utilization of low-frequency signal detection instead of existing acoustic sensor in the environment of electric noise and inferior condition. Furthermore, they can be developed as the high-sensibility and multi-point signal detection system through the sensor array system.

키워드

참고문헌

  1. J. A. Bucaro, J. H. Cole, J. Jarzynski, W.K. Burns, and T. G. Giallorenzi. "Optical Fiber Sensor Development" Physics of fiber optics, Vol2, Advances in Ceramics, Amer Ceramic SOC, p493-514, 1981.
  2. S. B. Poole, D. N. Payne, and M. E. Fermann, Electron.Lett, 21, P737, 1985. https://doi.org/10.1049/el:19850520
  3. G. A. Ball and W. W. More, "Compressiontuned single-frequency Bragg-grating fiber laser," Opt. Lett, 19, p1979-1981,1994. https://doi.org/10.1364/OL.19.001979
  4. S. C. Kang, S. Y. Kim, S. B.L ee, S. W. Kwon, S. S. Choi, and B. Lee "Temperatureindependent demodulation technique for fiber Bragg grating strain sensors using a tilted fiber Bragg grating" Conference on Lasers and Electro-Optics, San Francisco, CA, 1998.
  5. Takahashi "Underwater Acoustic Sensor using Optical Fiber Bragg Grating as Detecting element" Jpn.J.Appl.Phys.Vol 38, Dec 2009.
  6. K.B.Kim San hack researches commissioned of government, "A study of Hopper type WDM be in the making" Report, May 2013.
  7. Kersey, A. D., et al. 'Fiber Grating Sensors' IEEE Journal of Lightwave Technology. Vol 15, P1442-1463. 1997. https://doi.org/10.1109/50.618377
  8. Takahashi, Tetsumura, "Fiber Bragg Grating underwater acoustic sensor" OFS-13, SPIE Vol. 3746, April 2007.
  9. K.B.Kim, Journal of the Electronics Engineers of Korea, Vol 50, No 12, December 2013.