References
- R. E. H. Sims, R. N. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H. B. Nimir, B. Schlamadinger, J. Torres-Martinez, C. Turner, Y. Uchiyama, S. J. V. Vuori, N. Wamukonya, and X. Zhang, "Energy Supply. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, United Kingdom and New York, NY, USA (2007).
- J. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yub, H. Jeong, P. B. Balbuena, and H. Zhou, Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-Organic Frameworks, Coord. Chem. Rev., 255, 1791 (2001).
-
J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastavab, Advances in
$CO_2$ Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program, Internal. J. Greenhouse Gas Control, 2, 9 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1 - D. M. D'Aessandro, B. Smit, and J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Ed.,49, 6058 (2010). https://doi.org/10.1002/anie.201000431
-
F. Brandani and D. M. Ruthven, The Effect of Water on the Adsorption of
$CO_2$ and$C_3H_8$ on Type X Zeolites, Ind. Chem. Res., 43, 8339 (2004). https://doi.org/10.1021/ie040183o -
G. T. Rochelle, Amine Scrubbing for
$CO_2$ Capture, Science, 325, 1652 (2009). https://doi.org/10.1126/science.1176731 - G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder, and M. Attalla, Carbon Dioxide Postcombustion Capture: A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines, Environ. Sci. Technol., 43, 6427 (2009). https://doi.org/10.1021/es901376a
-
S. C. Lee, B. Y. Choi, T. J. Lee, C. K. Ryu, Y. S. Ahn, and J. C. Kim,
$CO_2$ absorption and regeneration of alkali metal-based solid sorbents, Catal. Today, 111, 385 (2006). https://doi.org/10.1016/j.cattod.2005.10.051 - Y. Liang and D. P. Harrison, Carbon Dioxide Capture Using Dry Sodium-Based Sorbents, Energy & Fuels, 18, 569 (2004). https://doi.org/10.1021/ef030158f
-
A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, Post-Combustion
$CO_2$ Capture Using Solid Sorbents: A Review, Ind. Eng. Chem. Res., 51, 1438 (2012). https://doi.org/10.1021/ie200686q - M. E. Davis and R. F. Lobo, Zeolite and Molecular Sieve Synthesis, Chem. Mater., 4(4), 756 (1992). https://doi.org/10.1021/cm00022a005
-
S. Coriani, A. Halkier, A. Rizzo, and K. Ruud, On themolecular electric quadrupole moment and the electric-fieldgradientinducedbirefringence of
$CO_2$ and$CS_2$ , Chem. Phys. Lett., 326, 269 (2000). https://doi.org/10.1016/S0009-2614(00)00793-4 -
E. Diaz, E. Munoz, A. Vega, and S. Ordonez, Enhancement of the
$CO_2$ retention capacity of Y zeolites by Na and Cs treatment: Effect ofadsorption temperature and water treatment, Ind. Eng. Chem. Res., 47, 412 (2008). https://doi.org/10.1021/ie070685c -
M. Katoh, T. Yoshikawa, T. Tomonari, K. Katayama, and T. Tomida, Adsorption characteristics of ion-exchanged ZSM-5 zeolites for
$CO_2/N_2$ mixtures, J. Colloid Interface Sci., 226, 145 (2000). https://doi.org/10.1006/jcis.2000.6795 - E. A. Ustinov, D. D. Do, and V. B. Fenelonov, Pore size distribution analysis of activated carbons: Application of density functional theory using nongraphitized carbon black as a reference system, Carbon, 44(4), 653 (2006). https://doi.org/10.1016/j.carbon.2005.09.023
- O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, J. Am. Chem. Soc., 134(36), 15016 (2012). https://doi.org/10.1021/ja3055639
-
S. Han, Y. Huang, T. Watanabe, Y. Dai, K. S. Walton, S. Nair, D. S. Sholl, and J. C. Meredith, High-Throughput Screening of Metal-Organic Frameworks for
$CO_2$ Separation, ACS Comb. Sci., 14(4), 263 (2012). https://doi.org/10.1021/co3000192 - K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, and J.R. Long, Carbon Dioxide Capture in Metal-Organic Frameworks, Chem. Rev., 112(2),724 (2012). https://doi.org/10.1021/cr2003272
- N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Hydrogen Storage in Microporous Metal-Organic Frameworks, Science, 300, 1127 (2003). https://doi.org/10.1126/science.1083440
- J. L. C. Rowsell and O. M. Yaghi, Strategies for Hydrogen Storage in Metal-Organic Frameworks, Angew. Chem. Int. Ed., 44(30), 4670 (2005). https://doi.org/10.1002/anie.200462786
- S. Ma and H. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun., 46, 44 (2010). https://doi.org/10.1039/B916295J
- D. D. Do and K. Wang, A new model for the description ofadsorption kinetics in heterogeneous activated carbon, Carbon, 36, 1539 (1998). https://doi.org/10.1016/S0008-6223(98)00145-6
-
K. Berlier and M. Frere, Adsorption of
$CO_2$ on activated carbon:Simultaneous determination of integral heat and isotherm of adsorption, J. Chem. Eng. Data, 41, 1144 (1996). https://doi.org/10.1021/je960080f - M. Heuchel, G. M. Davies, E. Buss, and N. A. Seaton, Adsorptionof carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment, Langmuir, 15, 8695 (1999). https://doi.org/10.1021/la9904298
-
K. Berlier and M. Frere, Adsorption of
$CO_2$ on microprous. 1. Onactivated carbon and silica gel, J. Chem. Eng. Data, 42, 533 (1997). https://doi.org/10.1021/je9603180 -
B. K. Na, K. K. Koo, H. M. Eum, H. Lee, and H. K. Song,
$CO_2$ recovery from flue gas by PSA process using activated carbon, Korean J. Chem. Eng., 18, 220 (2001). https://doi.org/10.1007/BF02698463 - S. Sircar and T. C. Golden, Isothermal and isobaric desorption ofcarbon dioxide by purge, Ind. Eng. Chem. Res., 34, 2881 (1995). https://doi.org/10.1021/ie00047a042
- R. V. D. Vaart, C. Huiskes, H. Bosch, and T. Reith, Single andmixed gas adsorption equilibria of carbon dioxide/methane on activatedcarbon, Adsorption 6, 311 (2000). https://doi.org/10.1023/A:1026560915422
-
G. Calleja, A. Jimenez, J. Pau, L. Dominguez, and P. Pbrez, Multicomponent adsorption equilibrium of ethylene, propane, propyleneand
$CO_2$ on 13X zeolites, Gas. Sep. Purif., 8, 247 (1994). https://doi.org/10.1016/0950-4214(94)80005-7 -
K. Kamiuto, S. Abe, and Ermalina, Effect of desorption temperatureon
$CO_2$ adsorption equilibria of the honeycomb zeolite beds, Appl. Energy, 72, 555 (2002). https://doi.org/10.1016/S0306-2619(02)00048-X -
P. J. E. Harlick and F. H. Tezel, Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5with
$SiO_2/Al_2O_3$ ratio of 280, Sep. Purif. Technol., 33, 199 (2003). https://doi.org/10.1016/S1383-5866(02)00078-3 -
P. J. E. Harlick and F. H. Tezel, An experimental adsorbentscreening study for
$CO_2$ removal from$N_2$ , Micro. Meso. Mater., 76, 71 (2004). https://doi.org/10.1016/j.micromeso.2004.07.035 -
M. Katoh, T. Yoshikawa, T. Tomonari, K. Katayama, and T. Tomida, Adsorption characteristics of ion-exchanged ZSM-5 zeolites for
$CO_2/N_2$ mixtures, J. Colloid Interface Sci., 226, 145 (2000). https://doi.org/10.1006/jcis.2000.6795 - V. R. Choudhary, S. Mayadevi, and A. P. Singh, Sorption isothermsof methane, ethane, ethene and carbon dioxide on NaX, NaY and Namordenitezeolites, J. Chem. Soc. Faraday Trans., 91, 2935 (1995). https://doi.org/10.1039/ft9959102935
- J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption, Energy Environ. Sci., 4, 3030 (2011). https://doi.org/10.1039/c1ee01720a
- P. D. C. Dietzel, V. Besikiotis, and R. Blom, Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem., 19, 7362 (2009). https://doi.org/10.1039/b911242a
- P. Aprea, D. Caputo, N. Gargiulo, F.Iucolano, and F. Pepe, Modeling carbon dioxide adsorption on microporous substrates: Comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve, J. Chem. Eng. Data, 55, 3655 (2010). https://doi.org/10.1021/je1002225
- A. O. Yazaydin, R. Q. Snurr, T. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. L. Low, and R. R. Willis, Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach, J. Am. Chem. Soc., 131, 18198 (2009). https://doi.org/10.1021/ja9057234
-
A. Demessence, D. M. D'Alessandro, M. L. Foo, and J. R. Long, Strong
$CO_2$ binding in a water-stable, triazolatebridged metal-organic framework functionalized with ethylenediamine, J. Am. Chem. Soc., 131(25), 8784 (2009). https://doi.org/10.1021/ja903411w - S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Ferey, S. Bourrelly, and P. L. Llewellyn, Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal-Organic Framework, Ni-STA-12, J. Am. Chem. Soc., 130, 15967 (2008). https://doi.org/10.1021/ja804936z
-
J. T. Yeh and H. W. Pennline, Study of
$CO_2$ Absorption and Desorption in a Packed Column, Energy & Fuels, 15, 274 (2001). https://doi.org/10.1021/ef0002389 - B. Chalermsinsuwan, P. Piumsomboon, and D. Gidaspow, A Computational Fluid Dynamics Design of a Carbon Dioxide Sorption Circulating Fluidized Bed, AIChE J., 56(11), 2805 (2010). https://doi.org/10.1002/aic.12213
- J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ. Sci., 4, 3030 (2011). https://doi.org/10.1039/c1ee01720a
-
J. Zhang and P. A. Webley, Cycle Development and Design for
$CO_2$ Capture from Flue Gas by Vacuum Swing Adsorption, Environ. Sci. Technol., 42(2), 563 (2008). https://doi.org/10.1021/es0706854 - W. E. Waldron and S. Sircar, Parametric Study of a Pressure Swing Adsorption Process, Adsorption, 6, 179 (2000). https://doi.org/10.1023/A:1008925703871