DOI QR코드

DOI QR Code

A Study on Practical Function of Neoprene Fabric Design in wearable Device for Golf Posture Training: Focus on Assistance Band with Arduino/Flex Sensor

네오프렌(Neoprene)소재로 구성된 골프자세 훈련용 웨어러블 디바이스의 실용적 기능에 관한 연구: Flex Sensor 및 아두이노를 장착한 보조밴드를 중심으로

  • Lee, Euna (Dept. of Clothing & Textiles, Ewha Womans University) ;
  • Kim, Jongjun (Dept. of Clothing & Textiles, Ewha Womans University)
  • 이은아 (이화여자대학교 의류학과) ;
  • 김종준 (이화여자대학교 의류학과)
  • Received : 2014.05.02
  • Accepted : 2014.08.08
  • Published : 2014.09.30

Abstract

Currently smart textile market is rapidly expanding and the demand is increasing integration of an electronic fiber circuit. The garments are an attractive platform for wearable device. This is one of the integration techniques, which consists of is the selective introduction of conductive yarns into the fabric through knitting, weaving or embroidering. The aim of this work is to develop a golf bend driven prototype design for an attachable Arduino that can be used to assess elbow motion. The process begins with the development of a wearable device technique that uses conductive yarn and flex sensor for measurement of elbow bending movements. Also this paper describes and discusses resistance value of zigzag embroidery of the conductive yarns on the tensile properties of the fabrics. Furthermore, by forming a circuit using an Arduino and flex sensor the prototype was created with an assistance band for golf posture training. This study provides valuable information to those interested in the future directions of the smart fashion industry.

Keywords

References

  1. Akita, J., Shinmura, T., Murakami, T., Yao, M., & Toda, M. (2006). Flexible network system for wearable computing using conductive fabric. Proceedings of 2006 Annual International Conference on Mobile Data Management (p. 101). Washington DC: IEEE Computer Society.
  2. Atalay, O., & Kennon, W. R. (2014). Knitted strain sensors: Impact of design parameters on sensing properties. Sensors, 14(3), 4712-4730. https://doi.org/10.3390/s140304712
  3. Axisa, F., Brosteaux, D., De Leersnyder, E., Bossuyt, F., Vanfleteren, J., Hermans, B., & Puers, R. (2007). Biomedical stretchable systems using mid based stretchable electronics technology. 29th Annual International Conference on Engineering in Medicine and Biology Society of the IEEE, 2007, 5687-5690.
  4. Cho, G,. (2006). The latest clothing material. Seoul: Sigmaprensa.
  5. Choi, K., Kim, J., & Song, N. (2012). A study on the analysis of 3D scanning of knit stitches and modeling system-jersey, rib, and cable stitches. The Korean Society of Fashion Business, 16(3), 125-135. https://doi.org/10.12940/jfb.2012.16.3.125
  6. Dion, G. (2013). Garment device: Challenges to fabrication of wearable technology. Proceedings of the 8th International Conference on Body Area Networks, 97-102.
  7. Feng, A., Knieser, M., Rizkalla, M., King, B., Salama, P., & Bowen, F. (2012). Embedded system for sensor communication and security. Information Security of the IET, 6(2), 111-121. https://doi.org/10.1049/iet-ifs.2010.0073
  8. Gimpel, S., Mohring, U., Muller, H., Neudeck, A., & Scheibner, W. (2004). Textile-based electronic substrate technology. Journal of Industrial Textiles, 33(3), 179-189. https://doi.org/10.1177/1528083704039828
  9. Gioberto, G., Coughlin, J., Bibeau, K., & Dunne, L. E. (2013). Detecting bends and fabric folds using stitched sensors. Proceedings of the 17th Annual International Symposium on Wearable Computers, 53-56.
  10. Ha, Y., & Kim, Y. (2014). A study of wearable computer for extending expression on the stage. The Korean Society of Fashion Design, 14(1), 1-15.
  11. Kallmayer, C., & Simon, E. (2012). Large area sensor integration in textiles. Proceedings of 9th International Multi-Conference on Systems, Signals and Devices (SSD) (pp. 1-5). Chemnitz: IEEE Computer Society.
  12. Kannaian, T., Neelaveni, R., & Thilagavathi, G. (2013). Design and development of embroidered textile electrodes for continuous measurement of electrocardiogram signals. Journal of Industrial Textiles, 42(3), 303-318. https://doi.org/10.1177/1528083712438069
  13. Kim, D., Lee, J., & Ahn, H. (2011). Design of virtual coaching device for golf putting. The Korea Society of Mechanical Engineers, 2011(5), 339-342.
  14. Kim, M., & Kim, J. (2013). A study on three-dimensional effects and deformation of textile fabrics: Dynamic deformations of silk fabrics. The Korean Society of Fashion Business, 17(6), 28-43. https://doi.org/10.12940/jfb.2013.17.6.28
  15. Ko, Y., & Kim, J. (2013). Effect of fabric properties used for the loop type decorative elements on the 3-dimensional shape. The Korean Society of Fashion Business, 17(3), 30-47. https://doi.org/10.12940/jfb.2013.17.3.30
  16. Lee, Y., & Kim, J. (2011). A study on the drape profile analysis of the apparel textiles and 3D virtual textiles using a 3D digital clothing software. The Korean Society of Fashion Business, 15(5), 103-114.
  17. Lee, S., Lee, C., Kim, K., & Kim, J. (2008). Fabrication of active cooling e-textiles. The Korea Society of Dyers and Finishers, 20(6), 82-86. https://doi.org/10.5764/TCF.2008.20.6.082
  18. Li, L., Au, W., Li, Y., Wan, K., Wan, S., & Wong, K. (2008). Electromechanical analysis of conductive yarn knitted in plain knitting stitch under unidirectional extension. Proceedings of International Symposium on Textile Bioengineering and Informatics Symposium (pp. 14-16). Hong Kong: Institute of Textiles and Clothing.
  19. Lim, S. (2013). A Development of Golf Coaching using Human Motion Analysis. Korea Safety Management and Science, 15(2), 55-61. https://doi.org/10.12812/ksms.2013.15.2.55
  20. Linz, T., Kallmayer, C., Aschenbrenner, R., & Reichl, H. (2006). Fully untegrated EKG shirt based on embroidered electrical interconnections with conductive yarn and miniaturized flexible electronics. Proceedings of 9th International Workshop on Wearable and Implantable Body Sensor Networks (pp. 23-26). Cambridge: IEEE Computer Society.
  21. Lorussi, F., Scilingo, E., Tesconi, M., Tognetti, A., & De Rossi, D. (2003). Wearable sensing garment for posture detection, rehabilitation and tele-medicine. Proceedings of 4th International Special Topic Conference on Information Technology Applications in Biomedicine (pp. 287-290). Washington DC: IEEE Computer Society.
  22. Marculescu, D., Marculescu, R., Zamora, N. H., Stanley-Marbell, P., Khosla, P. K., Park, S., ... Weber, W. (2003). Electronic textiles: A platform for pervasive computing. Proceedings of the IEEE, 91(12), 1995-2018. https://doi.org/10.1109/JPROC.2003.819612
  23. Meyer, J., Arnrich, B., Schumm, J., & Troster, G. (2010). Design and modeling of a textile pressure sensor for sitting posture classification. Sensors Journal IEEE, 10(8), 1391-1398. https://doi.org/10.1109/JSEN.2009.2037330
  24. Orth, M. (2002). Defining flexibility and sewability in conductive yarns. Proceedings of the MRS, 736(1), 1-4.
  25. Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine IEEE Transactions, 9(3), 337-344. https://doi.org/10.1109/TITB.2005.854512
  26. Park, S., & Kim. W. (2013). Electronic and Smart Textiles. Polymer Science and Technology, 24(1), 38-44. https://doi.org/10.1002/pat.3187
  27. Post, E. R., Orth, M., Russo, P., & Gershenfeld, N. (2000). E-broidery: Design and fabrication of textile-based computing. IBM Systems Journal, 39(3.4), 840-860. https://doi.org/10.1147/sj.393.0840
  28. Roh, J., Chi, Y., Lee, J., Nam, S., & Kang, T. J. (2010). Characterization of embroidered inductors. Smart Materials and Structures, 19(11), 5020.
  29. Ryu. J. (2012). Conductive materials for textile based sensor design (Unpublished doctoral dissertation). Kyungbuk University, Daegu, Korea.
  30. Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. Sensors Journal of the IEEE, 3(4), 460-467. https://doi.org/10.1109/JSEN.2003.815771
  31. Shaw, R. K., Long, B. R., Werner, D. H., & Gavrin, A. (2007). The characterization of conductive textile materials intended for radio frequency applications. Antennas and Propagation Magazine of the IEEE, 49(3), 28-40. https://doi.org/10.1109/MAP.2007.4293934
  32. Silva, N. L., Goncalves, L., & Carvalho, H. (2013). Deposition of conductive materials on textile and polymeric flexible substrates. Journal of Materials Science: Materials in Electronics, 24(2), 635-643.
  33. Song, C. (2008). Golf Swing Diagnosis Equipment based on MEMS Inertial Sensors. The Korea Society of Mechanical Engineers, 2008(11), 1761-1766.
  34. Song, H., Lee, J., Kang, D., Cho, H., Cho, H., Lee, J., & Lee, Y. (2010). Textile electrodes of jacquard woven fabrics for biosignal measurement. The Journal of the Textile Institute, 101(8), 758-770. https://doi.org/10.1080/00405000903442086
  35. Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2007). New tendencies of wearable electronics application in smart clothing. Electronics & Electrical Engineering, 73(1), 21-24.
  36. Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140. https://doi.org/10.1016/j.sna.2005.10.026
  37. Zheyu, W., Lanlin, Z., Bayram, Y., & Volakis, J. L. (2012). Embroidered conductive fibers on polymer composite for conformal antennas. Antennas and Propagation of the IEEE Transactions, 60(9), 4141-4147. https://doi.org/10.1109/TAP.2012.2207055
  38. Zysset, C., Cherenack, K., Kinkeldei, T., & Troster, G. (2010). Weaving integrated circuits into textiles. International Symposium on Wearable Computers of the ISWC, 1-8.
  39. Yuehui, O., & Chappell, W. J. (2008). High frequency properties of electro-textiles for wearable antenna applications. Antennas and Propagation of the IEEE Transactions, 56(2), 381-389. https://doi.org/10.1109/TAP.2007.915435

Cited by

  1. 반복신장 및 마모강도시험을 통한 봉제방법에 따른 스테인리스 스틸 전도사의 내구성 평가 vol.42, pp.3, 2014, https://doi.org/10.5850/jksct.2018.42.3.474
  2. 전도성사의 심 퍼커와 봉합강도 평가 vol.45, pp.1, 2021, https://doi.org/10.5850/jksct.2021.45.1.46
  3. 2D 및 3D 패턴 활용 둥근어깨 교정보조기 착용감 비교 vol.25, pp.3, 2021, https://doi.org/10.12940/jfb.2021.25.3.71