DOI QR코드

DOI QR Code

Near-IR Quantum Cutting Phosphors: A Step Towards Enhancing Solar Cell Efficiency

  • Jadhav, Abhijit P. (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Khan, Sovann (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Sun Jin (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST)) ;
  • Cho, So-Hye (Center for Materials Architecturing, Korea Institute of Science and Technology (KIST))
  • Received : 2014.09.24
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

The global demand for energy has been increasing since past decades. Various technologies have been working to find a suitable alternative for the generation of sustainable energy. Photovoltaic technologies for solar energy conversion represent one of the significant routes for the green and renewable energy production. Despite of remarkable improvement in solar cell technologies, the generation of power is still suffering with lower energy conversion efficiency, high production cost, etc. The major problem in improving the PV efficiency is spectral mismatch between the incident solar spectrum and bandgap of a semiconductor material used in solar cell. Luminescent materials such as rare-earth doped phosphor materials having the quantum efficiency higher than unity can be helpful for photovoltaic applications. Quantum cutting phosphors are the most suitable candidates for the generation of two or more low-energy photons for the absorption of every incident high-energy photons. The phosphors which are capable of converting UV photon to visible and near-IR (NIR) photon are studied primarily for photovoltaic applications. In this review, we will survey various near IR quantum cutting phosphors with respective to their synthesis method, energy transfer mechanism, nature of activator, sensitizer and dopant materials incorporation and energy conversion efficiency considering their applications in photovoltaics.

Keywords

References

  1. A. B. Cristobal Lopez, A. Marti Vega, and A. Luque Lopez, in: Springer series in optical sciences, Springer, Berlin; New York (2012).
  2. S. V. Eliseeva and J. C. G. Bunzli, Chem. Soc. Rev. 39, 189 (2010). https://doi.org/10.1039/b905604c
  3. D. Q. Chen, Y. S. Wang, and M. C. Hong, Nano Energy 1, 73 (2012). https://doi.org/10.1016/j.nanoen.2011.10.004
  4. B. M. van der Ende, L. Aarts, and A. Meijerink, Phys. Chem. Chem. Phys. 11, 11081 (2009). https://doi.org/10.1039/b913877c
  5. S. Shionoya, H. Yamamoto, and W. M. Yen, Phosphor handbook, 2nd ed. , CRC; Taylor & Francis distributor, London (2007).
  6. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, J. Lumin. 82, 93 (1999). https://doi.org/10.1016/S0022-2313(99)00042-3
  7. Q. Y. Zhang and X. Y. Huang, Progress in Mater. Sci. 55, 353 (2010). https://doi.org/10.1016/j.pmatsci.2009.10.001
  8. X. Y. Huang, S. Y. Han, W. Huang, and X. G. Liu, Chem. Soc. Rev. 42, 173 (2013). https://doi.org/10.1039/c2cs35288e
  9. D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, Appl. Phys. Lett. 99, (2011).
  10. X. B. Chen, J. G. Wu, X. L. Xu, Y. Z. Zhang, N. Sawanobori, C. L. Zhang, Q. H. Pan, and G. J. Salamo, Optics Lett. 34, 887 (2009). https://doi.org/10.1364/OL.34.000887
  11. M. Miritello, R. Lo Savio, P. Cardile, and F. Priolo, Phys. Rev. B 81, (2010).
  12. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, Appl. Phys. Lett. 100, (2012).
  13. W. J. Zhang, D. C. Yu, J. P. Zhang, Q. Qian, S. H. Xu, Z. M. Yang, and Q. Y. Zhang, Opt. Mater. Express 2, 636 (2012). https://doi.org/10.1364/OME.2.000636
  14. D. C. Yu, X. Y. Huang, S. Ye, Q. Y. Zhang, and J. Wang, Aip Advances 1, (2011).
  15. B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. 21, 3073 (2009). https://doi.org/10.1002/adma.200802220
  16. J. J. Eilers, D. Biner, J. T. van Wijngaarden, K. Kramer, H. U. Gudel, and A. Meijerink, Appl. Phys. Lett. 96, (2010).
  17. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, Phys. Rev. B 81, (2010).
  18. K. M. Deng, T. Gong, L. X. Hu, X. T. Wei, Y. H. Chen, and M. Yin, Optics Express 19, 1749 (2011). https://doi.org/10.1364/OE.19.001749
  19. Z. H. Bai, M. Fujii, T. Hasegawa, K. Imakita, M. Mizuhata, and S. Hayashi, J. Phys. D-Appl. Phys. 44, (2011).
  20. W. Zheng, H. M. Zhu, R. F. Li, D. T. Tu, Y. S. Liu, W. Q. Luo, and X. Y. Chen, Phys. Chem. Chem. Phys. 14, 6974 (2012). https://doi.org/10.1039/c2cp24044k
  21. L. Aarts, B. M. van der Ende, and A. Meijerink, J. Appl. Phys. 106, (2009).
  22. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, Optics Lett. 36, 876 (2011). https://doi.org/10.1364/OL.36.000876
  23. D. C. Yu, X. Y. Huang, S. Ye, and Q. Y. Zhang, J. Alloys Compd. 509, 9919 (2011). https://doi.org/10.1016/j.jallcom.2011.07.088
  24. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, (2005).
  25. W. Strek, P. Deren, and A. Bednarkiewicz, J. Lumin. 87-9, 999 (2000).
  26. Q. Y. Zhang, G. F. Yang, and Z. H. Jiang, Appl. Phys. Lett. 91, (2007).
  27. B. S. Richards, Sol. Energ. Mat. Sol. C. 90, 1189 (2006). https://doi.org/10.1016/j.solmat.2005.07.001
  28. G. Liu and B. Jacquier, Spectroscopic Properties of Rare Earths in Optical Materials, Springer (2006).
  29. B. S. Richards, Sol. Energ. Mat. Sol. C. 90, 2329 (2006). https://doi.org/10.1016/j.solmat.2006.03.035
  30. F. Vetrone and J. A. Capobianco, Inter. J. Nanotech. 5, 1306 (2008). https://doi.org/10.1504/IJNT.2008.019840
  31. P. P. Fedorov, A. A. Luginina, S. V. Kuznetsov, and V. V. Osiko, J. Fluorine Chem. 132, 1012 (2011). https://doi.org/10.1016/j.jfluchem.2011.06.025
  32. P. A. Rodnyi, S. B. Mikhrin, P. Dorenbos, E. van der Kolk, C. W. E. van Eijk, A. P. Vink, and A. G. Avanesov, Optics Commun. 204, 237 (2002). https://doi.org/10.1016/S0030-4018(02)01243-9
  33. E. van der Kolk, P. Dorenbos, A. P. Vink, R. C. Perego, C. W. E. van Eijk, and A. R. Lakshmanan, Phys. Rev. B 64, (2001).
  34. E. van der Kolk, P. Dorenbos, C. W. E. van Eijk, A. P. Vink, C. Fouassier, and F. Guillen, J. Lumin. 97, 212 (2002). https://doi.org/10.1016/S0022-2313(02)00226-0
  35. P. Dorenbos, Phys. Rev. B 62, 15640 (2000). https://doi.org/10.1103/PhysRevB.62.15640
  36. P. Dorenbos, Phys. Rev. B 62, 15650 (2000). https://doi.org/10.1103/PhysRevB.62.15650
  37. E. van der Kolk, P. Dorenbos, and C. W. E. van Eijk, Optics Commun. 197, 317 (2001). https://doi.org/10.1016/S0030-4018(01)01452-3
  38. M. W. Wang, L. D. Sun, X. F. Fu, C. S. Liao, and C. H. Yan, Solid State Commun. 115, 493 (2000). https://doi.org/10.1016/S0038-1098(00)00218-0
  39. R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, X. M. Li, A. Benker, M. Winterer, and H. Hahn, J. Appl. Phys. 89, 1679 (2001). https://doi.org/10.1063/1.1333033
  40. P. N. Prasad, Nanophotonics, Wiley, Hoboken, NJ (2004).
  41. K. Deng, X. Wei, X. Wang, Y. Chen, and M. Yin, Appl. Phys. B-Lasers and Optics 102, 555 (2011). https://doi.org/10.1007/s00340-011-4413-7
  42. Q. Y. Zhang, C. H. Yang, Z. H. Jiang, and X. H. Ji, Appl. Phys. Lett. 90, (2007).
  43. Z. Song, J. Liao, X. L. Ding, X. L. Liu, and Q. L. Liu, J. Crystal Growth. 365, 24 (2013). https://doi.org/10.1016/j.jcrysgro.2012.12.022
  44. R. Zhou, Y. Kou, X. Wei, C. Duan, Y. Chen, and M. Yin, Appl. Phys. B-Lasers and Optics 107, 483 (2012). https://doi.org/10.1007/s00340-012-4956-2
  45. G. C. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, J. Rare Earth 31, 27 (2013). https://doi.org/10.1016/S1002-0721(12)60229-4
  46. J. Ueda and S. Tanabe, J. Appl. Phys. 110, (2011).
  47. G. M. Yang, S. M. Zhou, H. Lin, and H. Teng, Physica B-Condensed Matter 406, 3588 (2011). https://doi.org/10.1016/j.physb.2011.06.044
  48. H. Zhang, X. Y. Liu, F. Y. Zhao, L. H. Zhang, Y. F. Zhang, and H. Guo, Opt. Mater. 34, 1034 (2012). https://doi.org/10.1016/j.optmat.2011.12.022
  49. J. Y. Sun, Y. N. Sun, C. Cao, Z. G. Xia, and H. Y. Du, Appl. Phys. B-Lasers and Optics 111, 367 (2013). https://doi.org/10.1007/s00340-013-5342-4
  50. J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, Opt. Mater. 32, 998 (2010). https://doi.org/10.1016/j.optmat.2010.01.040
  51. H. J. Zhang, Y. H. Wang, and L. L. Han, J. Appl. Phys. 109, (2011).
  52. H. Lin, X. H. Yan, and X. F. Wang, Mater. Sci. and Eng. B-Adv. Func. Solid-State Mater. 176, 1537 (2011). https://doi.org/10.1016/j.mseb.2011.09.020
  53. H. S. Nalwa, L. S. Rohwer, Handbook of luminescence, display materials, and devices, American Scientific Publishers, Stevenson Ranch, Calif. , (2003).
  54. S. T. Aruna and A. S. Mukasyan, Current Opinion in Solid State & Mater. Sci. 12, 44 (2008). https://doi.org/10.1016/j.cossms.2008.12.002
  55. X. A. Y. Huang, X. A. H. Ji, and Q. Y. A. Zhang, J. Amer. Ceramic Soc. 94, 833 (2011). https://doi.org/10.1111/j.1551-2916.2010.04184.x
  56. Q. Y. Zhang, C. H. Yang, and Y. X. Pan, Appl. Phys. Lett. 90, (2007).
  57. X. Y. Huang and Q. Y. Zhang, J. Appl. Phys. 107, (2010).
  58. L. Y. Wu, X. N. Tian, X. T. Wei, Y. H. Chen, and M. Yin, J. Rare Earth 30, 1213 (2012). https://doi.org/10.1016/S1002-0721(12)60208-7
  59. N. Rakov and G. S. Maciel, J. Appl. Phys. 110, (2011).
  60. Sheetal, V. B. Taxak, Mandeep, and S. P. Khatkar, J. Alloys Compd. 549, 135 (2013). https://doi.org/10.1016/j.jallcom.2012.09.033
  61. V. B. Taxak, Sheetal, Dayawati, and S. P. Khatkar, Current Appl. Phys. 13, 594 (2013). https://doi.org/10.1016/j.cap.2012.10.011
  62. Q. Y. Zhang and X. F. Liang, J. Soc. Inform. Display 16, 755 (2008). https://doi.org/10.1889/1.2953482
  63. U. Rambabu and S. D. Han, Ceramics Inter. 39, 1603 (2013). https://doi.org/10.1016/j.ceramint.2012.08.002
  64. B. C. Cheng, L. T. Fang, Z. D. Zhang, Y. H. Xiao, and S. J. Lei, J. Phys. Chem. C 115, 1708 (2011). https://doi.org/10.1021/jp109796u
  65. H. Chander, Proc. of ASID, 11 (2006).
  66. J. L. Yuan, X. Y. Zeng, J. T. Zhao, Z. J. Zhang, H. H. Chen, and X. X. Yang, J. Phys. D-Appl. Phys. 41, (2008).
  67. L. M. Chen, Y. M. Long, Y. M. Qin, W. F. Li, Mater. Lett. 102, 59 (2013).
  68. W. L. Feng, Y. Jin, Y. Wu, D. F. Li, and A. K. Cai, J. Lumin. 134, 614 (2013). https://doi.org/10.1016/j.jlumin.2012.07.021
  69. T. Ogi, A. B. D. Nandiyanto, W. N. Wang, F. Iskandar, and K. Okuyama, Chem. Engineer. J. 210, 461 (2012). https://doi.org/10.1016/j.cej.2012.09.033
  70. W. Shi, A. Feng, H. B. Tang, Z. L. Ding, Y. Q. Ma, M. Z. Wu, and G. Li, Opt. Mater. 35, 609 (2013). https://doi.org/10.1016/j.optmat.2012.10.038
  71. G. Zhu, X. J. Wang, H. L. Li, L. K. Pan, H. C. Sun, X. J. Liu, T. Lv, and Z. Sun, Chem. Commun. 48, 958 (2012). https://doi.org/10.1039/c1cc16089c
  72. Z. H. Zhang, J. G. Feng, and Z. L. Huang, Particuol. 8, 473 (2010). https://doi.org/10.1016/j.partic.2010.04.001
  73. Q. Zhang, Q. Y. Meng, and W. J. Sun, Opt. Mater. 35, 915 (2013). https://doi.org/10.1016/j.optmat.2012.11.012
  74. H. Lai, A. Bao, Y. M. Yang, Y. C. Tao, H. Yang, Y. Zhang, and L. L. Han, J. Phys. Chem. C 112, 282 (2008). https://doi.org/10.1021/jp074103g
  75. Q. B. Li, J. M. Lin, J. H. Wu, Z. Lan, Y. Wang, F. G. Peng, and M. L. Huang, Electrochimica Acta 56, 4980 (2011). https://doi.org/10.1016/j.electacta.2011.03.125
  76. C. X. Li, J. Yang, P. P. Yang, H. Z. Lian, and J. Lin, Chem. Mater. 20, 4317 (2008). https://doi.org/10.1021/cm800279h
  77. J. X. Zhang, Q. Xiao, and Y. L. Liu, J. Rare Earth 31, 342 (2013). https://doi.org/10.1016/S1002-0721(12)60283-X
  78. J. S. Liao, D. Zhou, H. Y. You, H. R. Wen, Q. H. Zhou, and B. Yang, Optik. 124, 1362 (2013). https://doi.org/10.1016/j.ijleo.2012.03.046
  79. Z. H. Xu, C. X. Li, P. P. Yang, C. M. Zhang, S. S. Huang, and J. Lin, Cryst. Growth Des. 9, 4752 (2009). https://doi.org/10.1021/cg900604j
  80. X. P. Chen, X. Y. Huang, and Q. Y. Zhang, J. Appl. Phys. 106, (2009).
  81. C. X. Li, Z. W. Quan, J. Yang, P. P. Yang, and J. Lin, Inorg. Chem. 46, 6329 (2007). https://doi.org/10.1021/ic070335i
  82. J. Chen, H. Zhang, F. Li, and H. Guo, Mater. Chem. Phys. 128, 191 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.057
  83. T. Grzyb, M. Runowski, A. Szczeszak, and S. Lis, J. Sol. State Chem. 200, 76 (2013). https://doi.org/10.1016/j.jssc.2013.01.012
  84. Q. Q. Du, G. J. Zhou, J. Zhou, X. Jia, and H. F. Zhou, J. Alloys Compd. 552, 152 (2013). https://doi.org/10.1016/j.jallcom.2012.10.074
  85. S. Lepoutre, D. Boyer, and R. Mahiou, J. Lumin. 128, 635 (2008). https://doi.org/10.1016/j.jlumin.2007.10.033
  86. X. Q. Cao, T. Wei, Y. H. Chen, M. Yin, C. X. Guo, and W. P. Zhang, J. Rare Earth 29, 1029 (2011). https://doi.org/10.1016/S1002-0721(10)60592-3
  87. Y. J. Peng, J. Liu, K. Zhang, H. Luo, J. H. Li, B. Xu, L. X. Han, X. J. Li, and X. B. Yu, Appl. Phys. Lett. 99, (2011).
  88. P. Salas, R. Borja-Urby, L. A. Diaz-Torres, G. Rodriguez, M. Vega, and C. Angeles-Chavez, Mater. Sci. Engin. B-Adv. Funct. Solid-State Mater. 177, 1423 (2012). https://doi.org/10.1016/j.mseb.2012.01.009
  89. H. Y. Sun, X. Zhang, and Z. H. Bai, J. Rare Earth 31, 231 (2013). https://doi.org/10.1016/S1002-0721(12)60263-4
  90. J. J. Zhou, Y. Teng, X. F. Liu, S. Ye, Z. J. Ma, and J. R. Qiu, Phys. Chem. Chem. Phys. 12, 13759 (2010). https://doi.org/10.1039/c0cp00204f
  91. X. R. Cheng, L. Su, Y. Q. Wang, X. Zhu, X. T. Wei, and Y. Y. Wang, Opt. Mater. 34, 1102 (2012). https://doi.org/10.1016/j.optmat.2012.01.014
  92. M. H. Qu, R. Z. Wang, Y. Chen, Y. Zhang, K. Y. Li, and H. Yan, J. Lumin. 132, 1285 (2012). https://doi.org/10.1016/j.jlumin.2011.12.068
  93. M. H. Qu, R. Z. Wang, Y. Zhang, K. Y. Li, and H. Yan, J. Appl. Phys. 111, (2012).
  94. J. J. Zhou, Y. Teng, S. Ye, G. Lin, and J. R. Qiu, Opt. Mater. 34, 901 (2012). https://doi.org/10.1016/j.optmat.2011.12.002
  95. S. F. Zou, Z. L. Zhang, F. Zhang, and Y. L. Mao, J. Alloys Compd. 572, 110 (2013). https://doi.org/10.1016/j.jallcom.2013.03.287
  96. S. Ye, B. Zhu, J. X. Chen, J. Luo, and J. R. Qiu, Appl. Phys. Lett. 92, (2008).
  97. J. J. Zhou, Y. X. Zhuang, S. Ye, Y. Teng, G. Lin, B. Zhu, J. H. Xie, and J. R. Qiu, Appl. Phys. Lett. 95, (2009).
  98. H. L. Wen and P. A. Tanner, Opt. Mater. 33, 1602 (2011). https://doi.org/10.1016/j.optmat.2011.04.024
  99. Q. Zhang, X. F. Liu, S. Ye, B. Zhu, Y. B. Qiao, G. P. Dong, B. Qian, D. P. Chen, Q. L. Zhou, and J. R. Qiu, IEEE Photonics Technol. Lett. 21, 1169 (2009). https://doi.org/10.1109/LPT.2009.2023333
  100. B. Xu, B. Yang, Y. P. Zhang, H. P. Xia, and J. H. Wang, J. Rare Earth 31, 164 (2013). https://doi.org/10.1016/S1002-0721(12)60252-X
  101. Y. X. Zhuang, Y. Teng, J. J. Zhou, S. Ye, X. F. Liu, G. Lin, J. Ruan, and J. R. Qiu, J. Opt. Soc. Amer. B-Opt. Phys. 26, 2185 (2009). https://doi.org/10.1364/JOSAB.26.002185
  102. M. M. Smedskjaer, J. R. Qiu, J. Wang, and Y. Z. Yue, Appl. Phys. Lett. 98, (2011).
  103. B. C. Rowan, L. R. Wilson, and B. S. Richards, IEEE J. Selected Topics in Quantum Electronics 14, 1312 (2008). https://doi.org/10.1109/JSTQE.2008.920282
  104. J. C. Goldschmidt, P. Loper, S. Fischer, S. Janz, M. Peters, S. W. Glunz, G. Willeke, E. Lifshitz, K. Kramer, and D. Biner, in: Optoelectronic and Microelectronic Materials and Devices, (2008).
  105. W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961). https://doi.org/10.1063/1.1736034
  106. T. Trupke, M. A. Green, and P. Wurfel, J. Appl. Phys. 92, 1668 (2002). https://doi.org/10.1063/1.1492021
  107. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, Sol. Energ. Mat. Sol. C 93, 1182 (2009). https://doi.org/10.1016/j.solmat.2009.02.020
  108. D. L. Dexter, J. Chem. Phys. 21, 836 (1953). https://doi.org/10.1063/1.1699044
  109. F. S. Ham, W. W. Piper, and J. A. Deluca, B Am. Phys. Soc. 19, 258 (1974).
  110. Sommerdi. Jl, A. Bril, J. A. D. Poorter, and R. E. Breemer, Philips Res. Rep. 29, 13 (1974).
  111. A. Le Donne, S. K. Jana, S. Banerjee, S. Basu, and S. Binetti, J. Appl. Phys. 113, (2013).
  112. J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, Sol. Energ. Mat. Sol. C 120, 168 (2014). https://doi.org/10.1016/j.solmat.2013.08.039
  113. E. Cattaruzza, M. Mardegan, T. Pregnolato, G. Ungaretti, G. Aquilanti, A. Quaranta, G. Battaglin, and E. Trave, Sol. Energ. Mat. Sol. C 130, 272 (2014). https://doi.org/10.1016/j.solmat.2014.07.028
  114. Y. C. Chen and T. M. Chen, J Rare Earth 29, 723 (2011). https://doi.org/10.1016/S1002-0721(10)60530-3
  115. Y. C. Chen, W. Y. Huang, and T. M. Chen, J. Rare Earth 29, 907 (2011). https://doi.org/10.1016/S1002-0721(10)60565-0

Cited by

  1. Flame-synthesized Y2O3:Tb3+ nanocrystals as spectral converting materials vol.20, pp.9, 2018, https://doi.org/10.1007/s11051-018-4347-7