DOI QR코드

DOI QR Code

Characterization of Al Doped ZnO Thin Films Prepared by RF Magnetron Sputtering Under Various Substrate Temperatures

  • Kim, Deok Kyu (Advanced Development Team, Samsung Electronics Co. Ltd.) ;
  • Kim, Hong Bae (Department of Semiconductor Engineering, Cheongju University)
  • Received : 2014.08.25
  • Accepted : 2014.09.26
  • Published : 2014.09.30

Abstract

Al doped ZnO thin films have been deposited by a RF magnetron sputtering technique from a ZnO (2 wt.% $Al_2O_3$) target onto glass substrates heated at temperature ranging from RT to $400^{\circ}C$. X-ray diffraction analysis shows that the deposits have a preferential growth along the c-axis of a hexagonal structure. The full with at half maximum decreases from 0.45 to $0.43^{\circ}$ in the studied temperature range. The root main square surface roughness increases with substrate temperature from 1.89 to 2.67 nm. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is red-shifted with substrate temperature from RT to $400^{\circ}C$. The sheet resistance increases from 92 ohm/sq to 419 ohm/sq when the deposition temperature increases from RT to $400^{\circ}C$. The increment of sheet resistance is caused by lowered carrier concentration resulting from an increase in surface roughness.

Keywords

References

  1. J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). https://doi.org/10.1016/j.solener.2004.03.015
  2. T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A 14, 1689 (1996). https://doi.org/10.1116/1.580320
  3. C. Guillen, and J. Herrero, Thin Solid Films 520, 1 (2011). https://doi.org/10.1016/j.tsf.2011.06.091
  4. J. Mass, P. Bhattacharya, R. S. Katiyar, Mater. Sci. Eng. B 103, 9 (2003). https://doi.org/10.1016/S0921-5107(03)00127-2
  5. J. Nomoto, T. Hirano, T. Miyata, and T. Minami, Thin Solid Films 520, 1400 (2011). https://doi.org/10.1016/j.tsf.2011.10.003
  6. H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol. 205, 5083 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.011
  7. D. J. Lee, H. M Kim, J. Y. Kwon, H. Choi, S. H. Kim, and K. B. Kim, Adv. Funct. Mater. 21, 448 (2011). https://doi.org/10.1002/adfm.201001342
  8. Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattices Microstruct. 49, 644 (2011). https://doi.org/10.1016/j.spmi.2011.04.002
  9. A. I. Ali, A. H. Ammar, and A. Abdel Moez, Superlattices Microstruct. 65, 285 (2014). https://doi.org/10.1016/j.spmi.2013.11.007
  10. C. H. Ahn, S. Y. Lee, and H. K. Cho, Thin Solid Films 545, 106 (2013). https://doi.org/10.1016/j.tsf.2013.07.045
  11. J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). https://doi.org/10.1016/j.apsusc.2010.10.053
  12. Y. Igasaki and H. Saito, Thin Solid Films 199, 223 (1991). https://doi.org/10.1016/0040-6090(91)90004-H
  13. G. Haake, J. Appl. Phys. 47, 4086 (1976). https://doi.org/10.1063/1.323240

Cited by

  1. Effect of annealing treatment on the structural and optical properties of AZO samples vol.352, 2015, https://doi.org/10.1016/j.apsusc.2015.02.089
  2. Structure, optical constants and non-linear properties of high quality AZO nano-scale thin films vol.127, pp.10, 2016, https://doi.org/10.1016/j.ijleo.2016.01.029