DOI QR코드

DOI QR Code

Electronic Structure of the SrTiO3(001) Surfaces: Effects of the Oxygen Vacancy and Hydrogen Adsorption

  • Takeyasua, K. (Institute of Industrial Science, The University of Tokyo) ;
  • Fukadaa, K. (Institute of Industrial Science, The University of Tokyo) ;
  • Oguraa, S. (Institute of Industrial Science, The University of Tokyo) ;
  • Matsumotob, M. (Tokyo Gakugei University) ;
  • Fukutania, K. (Institute of Industrial Science, The University of Tokyo)
  • Received : 2014.09.24
  • Accepted : 2014.09.30
  • Published : 2014.09.30

Abstract

The influence of electron irradiation and hydrogen adsorption on the electronic structure of the $SrTiO_3$ (001) surface was investigated by ultraviolet photoemission spectroscopy (UPS). Upon electron irradiation of the surface, UPS revealed an electronic state within the band gap (in-gap state: IGS) with the surface kept at $1{\times}1$. This is considered to originate from oxygen vacancies at the topmost surface formed by electron-stimulated desorption of oxygen. Electron irradiation also caused a downward shift of the valence band maximum indicating downward band-bending and formation of a conductive layer on the surface. With oxygen dosage on the electron-irradiated surface, on the other hand, the IGS intensity was decreased along with upward band-bending, which points to disappearance of the conductive layer. The results indicate that electron irradiation and oxygen dosage allow us to control the surface electronic structure between semiconducting (nearly-vacancy free: NVF) and metallic (oxygen de cient: OD) regimes by changing the density of the oxygen vacancy. When the NVF surface was exposed to atomic hydrogen, in-gap states were induced along with downward band bending. The hydrogen saturation coverage was evaluated to be $3.1{\pm}0.8{\times}10^{14}cm^{-2}$ with nuclear reaction analysis. From the IGS intensity and H coverage, we argue that H is positively charged as $H^{{\sim}0:3+}$ on the NVF surface. On the OD surface, on the other hand, the IGS intensity due to oxygen vacancies was found to decrease to half the initial value with molecular hydrogen dosage. H is expected to be negatively charged as $H^-$ on the OD surface by occupying the oxygen vacancy site.

Keywords

References

  1. A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhes, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, G. Herrantz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthelemy, and M. J. Rozenberg, Nature 469, 189 (2011). https://doi.org/10.1038/nature09720
  2. W. Meevasana, P. D. C. King, R. H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, and Z.-X. Shen, Nat. Mater. 10, 114 (2011). https://doi.org/10.1038/nmat2943
  3. A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009). https://doi.org/10.1039/b800489g
  4. Y. Kuo and K. J. Klabunde, Nanotechnology 23, 294001 (2012). https://doi.org/10.1088/0957-4484/23/29/294001
  5. D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature 430, 657 (2004). https://doi.org/10.1038/nature02756
  6. V. E. Henrich, Prog. Surf. Sci. 9, 143 (1979). https://doi.org/10.1016/0079-6816(79)90011-X
  7. S. Azad, M. H. Engelhard, and L.-Q. Wang, J. Phys. Chem. B 109, 10327 (2005). https://doi.org/10.1021/jp045864b
  8. J. Baniecki, M. Ishii, K. Kurihara, K. Yamanaka, T. Yano, K. Shinozaki, T. Imada, K. Nozaki, and N. Kin, Phys. Rev. B 78, 195415 (2008). https://doi.org/10.1103/PhysRevB.78.195415
  9. J. Shen, H. Lee, R. Valent, and H. O. Jeschke, Phys. Rev. B 86, 195119 (2012). https://doi.org/10.1103/PhysRevB.86.195119
  10. O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317, 1052 (2007). https://doi.org/10.1126/science.1144787
  11. C. M. Yim, C. L. Pang and G. Thornton, Phys. Rev. Lett. 104, 036806 (2010). https://doi.org/10.1103/PhysRevLett.104.036806
  12. M. D'Angelo, R. Yukawa, K. Ozawa, S. Yamamoto, T. Hirahara, S. Hasegawa, M. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. Lett. 108, 116802 (2012). https://doi.org/10.1103/PhysRevLett.108.116802
  13. R. Yukawa, S. Yamamoto, K. Ozawa, M. D'Angelo, M. G. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. B 87, 115314 (2013). https://doi.org/10.1103/PhysRevB.87.115314
  14. F. Lin, S. Wang, F. Zheng, G. Zhou, J. Wu, B. L. Gu, and W. Duan, Phys. Rev. B 79, 35311 (2009). https://doi.org/10.1103/PhysRevB.79.035311
  15. B. Jalan, R. Engel-Herbert, T. E. Mates, and S. Stemmer, Appl. Phys. Lett. 93, 52907 (2008). https://doi.org/10.1063/1.2969037
  16. J.-H. Ahn, P. C. McIntyre, L. W. Mirkarimi, S. R. Gilbert, J. Amano, and M. Schulberg, Appl. Phys. Lett. 77, 1378 (2000). https://doi.org/10.1063/1.1290139
  17. Y. Iwazaki, Y. Gohda, and S. Tsuneyuki, APL Materials 2, 012103 (2014). https://doi.org/10.1063/1.4854355
  18. S. Ferrer and G. A. Somorjai, Surf. Sci. 94, 41 (1980). https://doi.org/10.1016/0039-6028(80)90155-7
  19. F. T. Wagner, S. Ferrer, and G. A. Somorjai, Surf. Sci. 101, 462 (1980). https://doi.org/10.1016/0039-6028(80)90641-X
  20. K. Takeyasu, K. Fukada, M. Matsumoto, and K. Fukutani, J. Phys.: Condens. Matter 25, 162202 (2013). https://doi.org/10.1088/0953-8984/25/16/162202
  21. K. Takeyasu, K. Fukada, S. Ogura, M. Matsumoto, and K. Fukutani, J. Chem. Phys. 140, 084703 (2014). https://doi.org/10.1063/1.4866645
  22. Y. Liang and D. A. Bonnell, Surf. Sci. 310, 128 (1994). https://doi.org/10.1016/0039-6028(94)91378-1
  23. K. Fukutani, Curr. Opin. Solid State Mater. Sci. 6, 153 (2002). https://doi.org/10.1016/S1359-0286(02)00039-6
  24. M. Wilde and K. Fukutani, Surf. Sci. Rep. in press.
  25. J. F. Zieqler, Handbook of stopping cross-sections for energetic ions in all elements (Pergamon Press, New York, 1980).
  26. K. Fukutani, A. Itoh, M. Wilde, and M. Matsumoto, Phys. Rev. Lett. 88, 116101 (2002). https://doi.org/10.1103/PhysRevLett.88.116101
  27. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. B 17, 4908 (1978). https://doi.org/10.1103/PhysRevB.17.4908
  28. V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Solid Stat. Commun. 24, 623 (1977). https://doi.org/10.1016/0038-1098(77)90376-3
  29. A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. M. F. de Groot, M. T. Czyzyk, and J. C. Fuggle, Phys. Rev. B 46, 9841 (1992). https://doi.org/10.1103/PhysRevB.46.9841
  30. J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008). https://doi.org/10.1103/PhysRevLett.100.226403
  31. Y. Ishida, R. Eguchi, M. Matsunami, K. Horiba, M. Taguchi, and A. Chainani, Phys. Rev. Lett. 100, 56401 (2008). https://doi.org/10.1103/PhysRevLett.100.056401
  32. R. Moos and K. H. Hardtl, J. Am. Ceram. Soc. 80, 2549 (1997).
  33. A. Rothschild, W. Menesklou, H. L. Tuller, and I.-T. Ellen, Chem. Mater. 18, 3651 (2006). https://doi.org/10.1021/cm052803x
  34. Q. Fu and T. Wagner, J. Phys. Chem. B 109, 11697 (2005). https://doi.org/10.1021/jp050601i
  35. Z. Hou and K. Terakura, J. Phys. Soc. Jpn. 79, 114704 (2010). https://doi.org/10.1143/JPSJ.79.114704
  36. M. A. Henderson, W. S. Epling, C. L. Perkins, C. H. F. Peden, and U. Diebold, J. Phys. Chem. B 103, 5328 (1999).
  37. P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7, 211 (1990).
  38. J. Tao, Q. Cuan, X.-Q. Gong, and M. Batzill, J. Phys. Chem. C 116, 20438 (2012). https://doi.org/10.1021/jp3064678
  39. E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S. Kim, and C. Hwang, Phys. Rev. B 73, 193202 (2006). https://doi.org/10.1103/PhysRevB.73.193202
  40. R. Astala and P. D. Bristowe, Modelling Simul. Mater. Sci. Eng. 9, 415 (2001). https://doi.org/10.1088/0965-0393/9/5/306
  41. R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl. Phys. 43, 2124 (1972). https://doi.org/10.1063/1.1661463
  42. Y. Chen, M. M. Abraham, L. C. Templeton, and W. P. Unruh, Phys. Rev. B 11, 881 (1975). https://doi.org/10.1103/PhysRevB.11.881
  43. Y. Chen, V. M. Orera, R. Gonzalez, R. T. Williams, G. P. Williams, G. H. Rosenblatt, and G. J. Pogatshnik, Phys. Rev. B 42, 1410 (1990). https://doi.org/10.1103/PhysRevB.42.1410
  44. K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, Nature 419, 462 (2002). https://doi.org/10.1038/nature01053
  45. Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, Nat. Mater. 11, 507 (2012). https://doi.org/10.1038/nmat3302
  46. F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 80, 245203 (2009). https://doi.org/10.1103/PhysRevB.80.245203
  47. Y. Iwazaki, T. Suzuki, and S. Tsuneyuki, J. Appl. Phys. 108, 83705 (2010). https://doi.org/10.1063/1.3483243
  48. D. R. Lide, CRC handbook of chemistry and physics (CRC Press, Boca Raton London New York Washington, D.C., 2001), 82nd ed.
  49. F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gra, D. Gal, S. Ru, and D. Cahen, J. Phys. Chem. B 105, 6347 (2001). https://doi.org/10.1021/jp010380q
  50. P. P. Ewald, Ann. Phys. 64, 253 (1921).
  51. G. G. Libowitz and T. R. P. Gibb Jr., J. Phys. Chem. 60, 510 (1956). https://doi.org/10.1021/j150538a036