DOI QR코드

DOI QR Code

An Open Tubular CEC Column of Excellent Separation Efficiency for Proteomic Analysis

  • Received : 2014.05.25
  • Accepted : 2014.06.18
  • Published : 2014.10.20

Abstract

Keywords

Experimental

Materials. Glacial acetic acid, trifluoroacetic acid (TFA), polyethylene glycol (PEG), sodium hydrogen phosphate, sodium dihydrogen phosphate, azobisisobutyronitrile (AIBN), 4-aminostyrene, ethyleneglycol dimetnacryalte (EDMA), γ-methacryloxypropyl trimethoxysilane (MAPS), lysozyme, ribonuclease A, α-chymotrypsinogen A, myoglobin, cytochrome C, and trypsin were purchased from Sigma-Aldrich (St. Louis, MO, USA). HPLC grade methanol, acetonitrile (ACN), 2-propanol, acetone, and water were obtained from Mallinckrodt Baker (Phillipsburg, NJ, USA). Silica capillaries (50 mm ID, 365 mm OD) were purchased from Grace (Deerfield, IL, USA).

Instrument. CEC experiments were performed on an Agilent (Waldbronn, Germany) HP3DCE system with a diode array detector and the Chemstation data processing software. The stock buffer solution (50 mM phosphate) was prepared in distilled water and kept in a refrigerator. Later, the pH of phosphate buffer was controlled to the desired pH followed by acetonitrile addition to get the final mobile phase. All the samples and eluents were filtered through a 0.2 μm cellulose membrane before analysis. Samples were injected hydrodynamically for 4 s under a pressure of 5 mbar. The detection wavelength was set to 214 nm. All the separations were carried out at a constant CE voltage of −20 kV and a temperature of 25 ℃ throughout. The OT-MIP column was flushed by running the eluent for about 1 h to acquire the stable baseline.

Tryptic Digest and Protein Samples. Cytochrome C 2.5 mg was mixed with trypsin 1.0 mg, 2.0 M urea 500 uL, 0.1 M ammonium bicarbonate 500 uL, and incubated for 24 h at 37 ℃. Then it was quenched with 1 mL 0.1% TFA and stored in a freezer until analysis. The protein sample was prepared by dissolving 1.0 mg each of lysozyme, ribonuclease A, α-chymotrypsinogen A, myoglobin, cytochrome C in 1.0 mL water, and stored in a freezer. Later, it was diluted 1,000 times in the mobile phase and injected.

Preparation of OT-CEC Column. The fused silica capillary was modified according to the procedure published elsewhere.35-38 Briefly, the silica capillary of 50 cm length was treated with 1 M NaOH, washed with water, 0.1 M HCl, water, and acetone in sequence, and dried under a flow of N2. A solution composed of 4 μL MAPS in 1.0 mL of 6.0 mM acetic acid was filled in the capillary for 6 h and the capillary was flushed thoroughly with methanol and dried under a nitrogen flow. After some trial-and-error based optimization, a mixture was prepared for formation of OT stationary phase for separation of proteins as follows: PEG (MW 10,000) 4.9 mg, 4-aminostyrene 8.2 μL, EDMA 59 μL, AIBN 3.5 mg dissolved in 1.0 mL 9/1 (v/v) ACN/2-propanol. The mixture was sonicated for 10 min and purged with nitrogen for 10 min. A piece of silica capillary was filled with the mixture and both capillary ends were sealed with rubber plugs. The reaction was carried out for 4 h at 50 ℃, then the capillary was thoroughly flushed with ACN, 9/1 (v/v) methanol/acetic acid, 5/5 (v/v) methanol/water in sequence. The same procedure was repeated for preparation of OT-CEC columns for the tryptic digest (separation of peptides) with somewhat different formulation of reaction mixture. The optimum formulation was found as follows: PEG (MW 10,000) 9.8 mg, 4-aminostyrene 24.6 μL, EDMA 59 μL, AIBN 3.5 mg dissolved in 1.0 mL 9/1 (v/v) ACN/2-propanol.

Optimization of Separation of Tryptic Digest. In addition to the optimization of formulation of reaction mixture, the elution conditions were also optimized by varying pH and mobile phase composition.

References

  1. Ye, M.; Jiang, X.; Feng, S.; Tian, R.; Zou, H. Trends Anal. Chem. 2007, 26, 80-84. https://doi.org/10.1016/j.trac.2006.10.012
  2. Govorun, V. M.; Archakov, A. I. Biochemistry (Moscow) 2002, 67, 1109-1123. https://doi.org/10.1023/A:1020959106412
  3. Shil, Y.; Xiang, R.; Horváth, C.; Wilkins, J. A. J. Chromatogr. A 2004, 1053, 27-36. https://doi.org/10.1016/j.chroma.2004.07.044
  4. Kubota, K.; Kosaka, T.; Ichikawa, K.; J. Chromatogr. B 2005, 815, 3-9. https://doi.org/10.1016/j.jchromb.2004.10.030
  5. D'Ambrosio, C.; Arena, S.; Talamo, F.; Ledda, L.; Renzone, G.; Ferrara, L.; Scaloni, A. J. Chromatogr. B 2005, 815, 157-168. https://doi.org/10.1016/j.jchromb.2004.07.017
  6. Capriotti, A. L.; Cavaliere, C.; Foglia, P.; Samperi, R.; Lagana, A. J. Chromatogr. A 2011, 1218, 8760-8776. https://doi.org/10.1016/j.chroma.2011.05.094
  7. Kelleher, N. L. Anal. Chem. 2004, 76, 196A-203A.
  8. Reid, G. E.; McLuckey, S. A. J. Mass Spectrom. 2002, 37, 663-675. https://doi.org/10.1002/jms.346
  9. McQueen, P.; Krokhin, O. Expert Rev. Proteomics 2012, 9, 125-128. https://doi.org/10.1586/epr.12.8
  10. Moradian, A.; Kalli, A.; Sweredoski, M. J.; Hess, S. Proteomics 2014, 14, 489-497. https://doi.org/10.1002/pmic.201300256
  11. Ahmed, F. E. J. Sep. Sci. 2009, 32, 771-798.
  12. Gedela, S.; Medicherla, N. R. Chromatographia 2007, 65, 511-518. https://doi.org/10.1365/s10337-007-0215-9
  13. Selvaraju, S.; El Rassi, Z. Electrophoresis 2012, 33, 74-88. https://doi.org/10.1002/elps.201100431
  14. Tomas, R.; Klearnik, K.; Foret, F. J. Sep. Sci. 2008, 31, 1964-1979. https://doi.org/10.1002/jssc.200800113
  15. Horvatovich, P.; Hoekman, B.; Govorukhina, N.; Bischoff, R. J. Sep. Sci. 2010, 33, 1421-1437. https://doi.org/10.1002/jssc.201000050
  16. Donato, P.; Cacciola, F.; Mondello, L.; Dugo, P. J. Chromatogr. A 2011, 1218, 8777-8790. https://doi.org/10.1016/j.chroma.2011.05.070
  17. Rigobello-Masini M.; Penteado, J. C. P.; Masini, J. C. Anal. Bioanal. Chem. 2013, 405, 2107-2122. https://doi.org/10.1007/s00216-012-6574-6
  18. Li, Y.; Lee, M. L. J. Sep. Sci. 2009, 32, 3369-3378. https://doi.org/10.1002/jssc.200900478
  19. Yue, G.; Luo, Q.; Zhang, J.; Wu, S.; Karger, B. L. Anal. Chem. 2007, 79, 938-946. https://doi.org/10.1021/ac061411m
  20. Luo, Q.; Yue, G.; Valaskovic, G. A.; Gu, Y.; Wu, S.; Karger, B. L. Anal. Chem. 2007, 79, 6174-6181. https://doi.org/10.1021/ac070583w
  21. Luo, Q.; Rejtar, T.; Wu, S.; Karger, B. L. J. Chromatogr. A 2009, 1216, 1223-1231. https://doi.org/10.1016/j.chroma.2008.09.105
  22. Thakur, D.; Rejtar, T.; Wang, D.; Bones, J.; Cha, S.; Clodfelder-Miller, B.; Richardson, E.; Binns, S.; Dahiya, S.; Sgroi, D.; Karger, B. L. J. Chromatogr. A 2011, 1218, 8168-8174. https://doi.org/10.1016/j.chroma.2011.09.022
  23. Wang, D.; Hincapie, M.; Rejtar, T.; Karger, B. L. Anal. Chem. 2011, 83, 2029-2037. https://doi.org/10.1021/ac102825g
  24. Rogeberg, M.; Wilson, S. R.; Greibrokk, T.; Lundanes, E. J. Chromatogr. A 2010, 1217, 2782-2786. https://doi.org/10.1016/j.chroma.2010.02.025
  25. Huang, X.; Zhang, J.; Horvath, C. J. Chromatogr. A 1999, 858, 91-101. https://doi.org/10.1016/S0021-9673(99)00795-5
  26. Eeltink, S.; Svec, F.; Frechet, J. M. J. Electrophoresis 2006, 27, 4249-4256. https://doi.org/10.1002/elps.200600259
  27. Kasicka, V. Electrophoresis 2012, 33, 48-73. https://doi.org/10.1002/elps.201100419
  28. Kasicka, V. Electrophoresis 2010, 31, 122-146. https://doi.org/10.1002/elps.200900442
  29. El Rassi, Z. Electrophoresis 2010, 31, 174-191. https://doi.org/10.1002/elps.200900576
  30. Nilsson, C.; Birnbaum, S.; Nilsson, S. Electrophoresis 2011, 32, 1141-1147. https://doi.org/10.1002/elps.201000645
  31. Sun, L.; Zhu, G.; Yan, X.; Champion, M. M.; Dovichi, N. J. Proteomics 2014, 14, 622-628. https://doi.org/10.1002/pmic.201300295
  32. Karenga, S.; El Rassi, Z. J. Sep. Sci. 2008, 31, 2677-2685. https://doi.org/10.1002/jssc.200800310
  33. Roccol, A.; Aturki, Z.; D'Orazio, G.; Fanali, S.; Solinova, V.; Hlavacek, J.; Kasicka, V. Electrophoresis 2007, 28, 1689-1695. https://doi.org/10.1002/elps.200600452
  34. Yang, Y.; Boysen, R. I.; Matyska, M. T.; Pesek, J. J.; Hearn, M. T. W. Anal. Chem. 2007, 79, 4942-4949. https://doi.org/10.1021/ac0622633
  35. Zaidi, S. A.; Cheong, W. J. J. Chromatogr. A 2009, 1216, 2947-2952. https://doi.org/10.1016/j.chroma.2008.08.015
  36. Zaidi, S. A.; Cheong, W. J. Electrophoresis 2009, 30, 1603-1607. https://doi.org/10.1002/elps.200800541
  37. Zaidi, S. A.; Han, K. M.; Hwang, D. G.; Cheong, W. J. Electrophoresis 2010, 31, 1019-1028.
  38. Zaidi, S. A.; Lee, S. M.; Cheong, W. J. J. Chromatogr. A 2011, 1218, 1291-1299. https://doi.org/10.1016/j.chroma.2010.12.117
  39. Cheong, W. J.; Yang, S. H.; Ali, F. J. Sep. Sci. 2013, 36, 609-628. https://doi.org/10.1002/jssc.201200784

Cited by

  1. Open tubular capillary column for the separation of cytochrome C tryptic digest in capillary electrochromatography vol.38, pp.20, 2015, https://doi.org/10.1002/jssc.201500765
  2. Open tubular-capillary electrochromatography: Developments and applications from 2013 to 2015 vol.37, pp.1, 2016, https://doi.org/10.1002/elps.201500339
  3. Capillary electrochromatography of proteins and peptides (2006-2015) vol.40, pp.1, 2017, https://doi.org/10.1002/jssc.201600908
  4. Molecular imprinting polymers and their composites: a promising material for diverse applications vol.5, pp.3, 2017, https://doi.org/10.1039/C6BM00765A
  5. Recent advances in microscale separation pp.01730835, 2018, https://doi.org/10.1002/elps.201700271
  6. Poly(norepinephrine)-coated open tubular column for the separation of proteins and recombination human erythropoietin by capillary electrochromatography pp.16159306, 2017, https://doi.org/10.1002/jssc.201700720
  7. Selective Targeted Drug Delivery Mechanism via Molecular Imprinted Polymers in Cancer Therapeutics vol.20, pp.None, 2014, https://doi.org/10.2174/1568026620666200622150710