DOI QR코드

DOI QR Code

Thermal Modulation of Photoluminescence from Single-Layer MoS2

  • Ryu, Yejin (Department of Applied Chemistry, Kyung Hee University) ;
  • Park, Min Kyu (Department of Applied Chemistry, Kyung Hee University) ;
  • Ryu, Sunmin (Department of Applied Chemistry, Kyung Hee University)
  • Received : 2014.04.18
  • Accepted : 2014.06.03
  • Published : 2014.10.20

Abstract

Keywords

Experimental

Single and few-layer MoS2 were prepared by mechanically exfoliating 2H-MoS2 crystals (SPI, molybdenite) onto a Si wafer substrate covered with a 285 nm thick amorphous SiO2 layer.11 Thin MoS2 sheets of several μm across were identified under an optical microscope for faster screening and were probed with Raman spectroscopy for their thickness. 11 Raman and PL spectra were obtained with a homebuilt micro-Raman spectrometer setup that has been described in detail elsewhere.27-29 Briefly, an Ar ion laser beam (514.5 nm, 0.17 mW) was focused onto a sample (spot size < 1 μm) using a microscope objective (40X, numerical aperture = 0.60). Back-scattered Raman or PL signal was collected with the same objective and guided to a spectrometer combined with a liquid nitrogen-cooled CCD detector. The overall spectral accuracy was better than 1 cm−1 and 1.5 meV for Raman and PL spectra, respectively. Atomic force microscopy (AFM) was also employed to reveal the nanoscopic morphology of the samples. To modify the PL characteristics, some samples were annealed in a vacuum (< 3 mtorr) or H2 gas (99.999%, flow rate = 30 mL/min) using a tube furnace. The annealing time was one hour unless stated otherwise.

References

  1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. https://doi.org/10.1126/science.1102896
  2. Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. https://doi.org/10.1038/nmat1849
  3. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805. https://doi.org/10.1103/PhysRevLett.105.136805
  4. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Nat. Nanotechnol. 2010, 5, 722. https://doi.org/10.1038/nnano.2010.172
  5. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 109. https://doi.org/10.1103/RevModPhys.81.109
  6. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Nano Lett. 2010, 10, 1271. https://doi.org/10.1021/nl903868w
  7. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Nat. Nanotechnol. 2012, 7, 494. https://doi.org/10.1038/nnano.2012.96
  8. Mak, K. F.; He, K.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Nat. Mater. 2013, 12, 207.
  9. Verble, J. L.; Wieting, T. J. Phys. Rev. Lett. 1970, 25, 362. https://doi.org/10.1103/PhysRevLett.25.362
  10. Mattheiss, L. F. Phys. Rev. B 1973, 8, 3719. https://doi.org/10.1103/PhysRevB.8.3719
  11. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. ACS Nano 2010, 4, 2695. https://doi.org/10.1021/nn1003937
  12. Newaz, A. K. M.; Prasai, D.; Ziegler, J. I.; Caudel, D.; Robinson, S.; Haglund, R. F.; Bolotin, K. I. Solid State Commun. 2013, 155, 49. https://doi.org/10.1016/j.ssc.2012.11.010
  13. Mak, K. F.; Sfeir, M. Y.; Misewich, J. A.; Heinz, T. F. Proc. Natl. Acad. Sci. USA 2010, 107, 14999. https://doi.org/10.1073/pnas.1004595107
  14. Wakabayashi, N.; Smith, H. G.; Nicklow, R. M. Phys. Rev. B 1975, 12, 659. https://doi.org/10.1103/PhysRevB.12.659
  15. Ferrari, A. C.; Basko, D. M. Nat. Nanotechnol. 2013, 8, 235. https://doi.org/10.1038/nnano.2013.46
  16. Ferrari, A. C. Solid State Commun. 2007, 143, 47. https://doi.org/10.1016/j.ssc.2007.03.052
  17. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H. Phys. Rev. B 2013, 87, 115413. https://doi.org/10.1103/PhysRevB.87.115413
  18. Molina-Sanchez, A.; Wirtz, L. Phys. Rev. B 2011, 84, 155413. https://doi.org/10.1103/PhysRevB.84.155413
  19. Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Nat. Commun. 2012, 3, 1024. https://doi.org/10.1038/ncomms2022
  20. Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2013, 13, 2831. https://doi.org/10.1021/nl4011172
  21. Liu, L.; Ryu, S.; Tomasik, M. R.; Stolyarova, E.; Jung, N.; Hybertsen, M. S.; Steigerwald, M. L.; Brus, L. E.; Flynn, G. W. Nano Lett. 2008, 8, 1965. https://doi.org/10.1021/nl0808684
  22. Ryu, S.; Liu, L.; Berciaud, S.; Yu, Y.-J.; Liu, H.; Kim, P.; Flynn, G. W.; Brus, L. E. Nano Lett. 2010, 10, 4944. https://doi.org/10.1021/nl1029607
  23. Lee, D.; Ahn, G.; Ryu, S. 2014, submitted.
  24. Chakrapani, V.; Angus, J. C.; Anderson, A. B.; Wolter, S. D.; Stoner, B. R.; Sumanasekera, G. U. Science 2007, 318, 1424. https://doi.org/10.1126/science.1148841
  25. Fontana, M.; Deppe, T.; Boyd, A. K.; Rinzan, M.; Liu, A. Y.; Paranjape, M.; Barbara, P. Sci. Rep. 2013, 3, 1634.
  26. Zhuravlev, L. T. Colloids Surf. A 2000, 173, 1. https://doi.org/10.1016/S0927-7757(00)00556-2
  27. Ahn, G.; Kim, H. R.; Ko, T. Y.; Choi, K.; Watanabe, K.; Taniguchi, T.; Hong, B. H.; Ryu, S. ACS Nano 2013, 7, 1533. https://doi.org/10.1021/nn305306n
  28. Shim, J.; Lui, C. H.; Ko, T. Y.; Yu, Y.-J.; Kim, P.; Heinz, T. F.; Ryu, S. Nano Lett. 2012, 12, 648. https://doi.org/10.1021/nl2034317
  29. Ryu, S.; Maultzsch, J.; Han, M. Y.; Kim, P.; Brus, L. E. ACS Nano 2011, 5, 4123. https://doi.org/10.1021/nn200799y

Cited by

  1. Simple Chemical Treatment to n-Dope Transition-Metal Dichalcogenides and Enhance the Optical and Electrical Characteristics vol.9, pp.13, 2017, https://doi.org/10.1021/acsami.6b15239
  2. as a Tunable Optical Platform vol.4, pp.10, 2016, https://doi.org/10.1002/adom.201600323
  3. On the role of nano-confined water at the 2D/SiO2 interface in layer number engineering of exfoliated MoS2 via thermal annealing vol.7, pp.2, 2014, https://doi.org/10.1088/2053-1583/ab5bf8
  4. Exciton-phonon coupling and power dependent room temperature photoluminescence of sulphur vacancy doped MoS2via controlled thermal annealing vol.12, pp.36, 2020, https://doi.org/10.1039/d0nr05229a
  5. Low-Temperature Photoluminescence Properties of the Monolayer MoS2 Nanomaterals vol.212, pp.1, 2014, https://doi.org/10.1080/10584587.2020.1819043
  6. Controllable preparation of the Au-MoS2 nano-array composite: optical properties study and SERS application vol.9, pp.21, 2021, https://doi.org/10.1039/d1tc00813g