DOI QR코드

DOI QR Code

Bamboo-like Te Nanotubes with Tailored Dimensions Synthesized from Segmental NiFe Nanowires as Sacrificial Templates

  • Suh, Hoyoung (Department of Physics, Chungnam National University) ;
  • Jung, Hyun Sung (Department of Chemical and Environmental Engineering, University of California-Riverside) ;
  • Myung, Nosang V. (Department of Chemical and Environmental Engineering, University of California-Riverside) ;
  • Hong, Kimin (Department of Physics, Chungnam National University)
  • Received : 2014.06.11
  • Accepted : 2014.07.15
  • Published : 2014.11.20

Abstract

Bamboo-like Te nanotubes were synthesized via the galvanic displacement reaction of NiFe nanowires with Ni-rich and Fe-rich segments. The thick and thin components of the synthesized Te nanotubes were converted from the Ni-rich and Fe-rich segments in the NiFe nanowires respectively. The dimensions of the Te nanotubes were controlled by employing sacrificial NiFe nanowires with tailored dimensions as the template for the galvanic displacement reaction. The segment lengths of the Te nanotubes were found to be dependent on those of the sacrificial NiFe nanowires. The galvanic displacement reaction was characterized by analyzing the open circuit potential and the corrosion resistance.

Keywords

References

  1. Yang, P. MRS Bulletin 2005, 30, 85. https://doi.org/10.1557/mrs2005.26
  2. Duan, X.; Huang, Y.; Cui, Y.; Wang, J.; Lieber, C. M. Nature 2001, 409, 66. https://doi.org/10.1038/35051047
  3. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289. https://doi.org/10.1126/science.1062711
  4. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947. https://doi.org/10.1126/science.1058120
  5. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126. https://doi.org/10.1126/science.290.5499.2126
  6. Meng, G.; Han, F.; Zhao, X.; Chen, B.; Yang, D.; Liu, J.; Xu, Q.; Kong, M.; Zhu, X.; Jung, Y. J.; Yang, Y.; Chu, Z.; Ye, M.; Kar, S.; Vajtai, R.; Ajayan, P. M. Angew. Chem. int. Edit 2009, 48, 7166. https://doi.org/10.1002/anie.200901999
  7. Chen, X.; Cui, C.-H.; Guo, Z.; Liu, J.-H.; Huang, X.-J.; Yu, S.-H. Small 2011, 7, 858. https://doi.org/10.1002/smll.201002331
  8. Wang, C.-Y.; Gong, N.-W.; Chen, L.-J. Adv. Mater. 2008, 20, 4789. https://doi.org/10.1002/adma.200703233
  9. Jung, H.; Suh, H.; Hangarter, C. M.; Lim, J. H.; Lee, Y.-I.; Choa, Y.-H.; Hong, K.; Myung, N. V. Appl. Phys. Lett. 2012, 100, 223105. https://doi.org/10.1063/1.4722919
  10. Hangarter, C. M.; Lee, Y.-I.; Hernandez, S. C.; Choa, Y.-h.; Myung, N. V. Angew. Chem. int. Edit 2010, 49, 7081. https://doi.org/10.1002/anie.201001559
  11. Mohseni, P. K.; Lawson, G.; Adronov, A.; LaPierre, R. R. IEEE J. Sel. Top. Quant., 2011, 17, 1070. https://doi.org/10.1109/JSTQE.2010.2048097
  12. Chang, P. C.; Fan, Z.; Wang, D.; Tseng, W. Y.; Chiou, W. A.; Hong, J.; Lu, J. G. Chem. Mater. 2011, 16, 5133.
  13. Hao, Y.; Meng, G.; Ye, C.; Zhang, L. Cryst. Growth. Des. 2005, 5, 1617. https://doi.org/10.1021/cg050103z
  14. Lin, H.-M.; Chen, Y.-L.; Yang, J.; Liu, Y.-C.; Yin, K.-M.; Kai, J.-J.; Chen, F.-R.; Chen, L.-C.; Chen, Y.-F.; Chen, C.-C. Nano Lett. 2003, 3, 537. https://doi.org/10.1021/nl0340125
  15. Mohanty, P.; Kang, T.; Kim, B.; Park, J. J. Phys. Chem. B 2005, 110, 791.
  16. Wang, Q.; Li, G.-D.; Liu, Y.-L.; Xu, S.; Wang, K.-J.; Chen, J.-S. J. Phys. Chem. C 2007, 111, 12926. https://doi.org/10.1021/jp073902w
  17. Hawley, C. J.; Beatty, B. R.; Chen, G.; Spanie, J. E. Cryst. Growth. Des. 2012, 12, 2789. https://doi.org/10.1021/cg2014368
  18. Sun, Y.; Wiley, B.; Li, Z.-Y.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 9399. https://doi.org/10.1021/ja048789r
  19. Zhang, Y.; Wang, H.; Kraemer, S.; Shi, Y.; Zhang, F.; Snedaker, M.; Ding, K.; Moskovits, M.; Snyder, G. J.; Stucky, G. D. ACS Nano 2011, 5, 3158. https://doi.org/10.1021/nn2002294
  20. Hormozi Nezhad, M. R.; Aizawa, M.; Porter, L. A.; Ribbe, A. E.; Buriak, J. M. Small 2005, 1, 1076. https://doi.org/10.1002/smll.200500121
  21. Xiao, F.; Yoo, B.; Lee, K. H.; Myung, N. V. J. Am. Chem. Soc. 2007, 129, 10068. https://doi.org/10.1021/ja073032w
  22. Suh, H.; Jung, H.; Hangarter, C. M.; Park, H.; Lee, Y.; Choa, Y.; Myung, N. V.; Hong, K. Electrochim. Acta 2012, 75, 201. https://doi.org/10.1016/j.electacta.2012.04.090
  23. Elazem, D.; Jung, H.; Wu, T.; Lim, J.-H.; Lee, K.-H.; Myung, N. V. Electrochim. Acta 2013, 106, 447. https://doi.org/10.1016/j.electacta.2013.05.117
  24. Jung, H.; Rheem, Y.; Chartuprayoon, N.; Lim, J.-H.; Lee, K.-H.; Yoo, B.; Lee, K.-J.; Choa, Y.-H.; Wei, P.; Shi, J.; Myung, N. V. J. Mater. Chem. 2010, 20, 9982. https://doi.org/10.1039/c0jm02058c
  25. Park, H.; Jung, H.; Zhang, M.; Chang, C. H.; Ndifor-Angwafor, N. G.; Choa, Y.; Myung, N. V. Nanoscale 2013, 5, 3058. https://doi.org/10.1039/c3nr00060e
  26. Liu, Z.; Hu, Z.; Liang, J.; Li, S.; Yang, Y.; Peng, S.; Qian, Y. Langmuir 2003, 20, 214.
  27. Mo, M.; Zeng, J.; Liu, X.; Yu, W.; Zhang, S.; Qian, Y. Adv. Mater. 2002, 14, 1658. https://doi.org/10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2
  28. Szymczak, J.; Legeai, S.; Diliberto, S.; Migot, S.; Stein, N.; Boulanger, C.; Chatel, G.; Draye, M. Electrochem. Commun. 2012, 24, 57. https://doi.org/10.1016/j.elecom.2012.08.013
  29. Zhu, Y.-J.; Wang, W.-W.; Qi, R.-J.; Hu, X.-L. Angew. Chem. Int. Edit 2004, 43, 1410. https://doi.org/10.1002/anie.200353101
  30. Jeong, D.-B.; Lim, J.-H.; Lee, J.; Park, H.; Zhang, M.; Lee, Y.-I.; Choa, Y.-H.; Myung, N. V. Electrochim. Acta 2013, 111, 200. https://doi.org/10.1016/j.electacta.2013.07.228
  31. Jung, H.; Myung, N. V. Electrochim. Acta 2011, 56, 5611. https://doi.org/10.1016/j.electacta.2011.04.010

Cited by

  1. Comprehensive Review on Thermoelectric Electrodeposits: Enhancing Thermoelectric Performance Through Nanoengineering vol.9, pp.None, 2014, https://doi.org/10.3389/fchem.2021.762896