DOI QR코드

DOI QR Code

Synthesis of Ochnaflavone and Its Inhibitory Activity on PGE2 Production

  • Kim, Sung Soo (College of Medicine of Kangwon National University) ;
  • Vo, Van Anh (College of Medicine of Kangwon National University) ;
  • Park, Haeil (College of Pharmacy of Kangwon National University)
  • Received : 2014.06.05
  • Accepted : 2014.07.11
  • Published : 2014.11.20

Abstract

Ochnaflavone, a naturally occurring biflavonoid composed of two units of apigenin (5,7,4'-trihydroxyflavone) joined via a C-O-C linkage, was first synthesized and evaluated its inhibitory activity on $PGE_2$ production. Total synthesis was accomplished through modified Ullmann diaryl ether formation as a key step. Coupling reactions of 4'-halogenoflavones and 3'-hydroxy-5,7,4'-trimethoxyflavone were explored in diverse reaction conditions. The reaction of 4'-fluoro-5,7-dimethoxyflavone (2c) and 3'-hydroxy-5,7,4'-trimethoxyflavone (2d) in N,N-dimethylacetamide gave the coupled compound 3 in 58% yield. Synthetic ochnaflavone strongly inhibited PGE2 production ($IC_{50}=1.08{\mu}M$) from LPS-activated RAW 264.7 cells, which was due to reduced expression of COX-2. On the contrary, the inhibition mechanism of wogonin was somewhat different from that of ochnaflavone although wogonin, a natural occurring anti-inflammatory flavonoid, showed strong inhibitory activity of $PGE_2$ production ($IC_{50}=0.52{\mu}M$), and seems to be COX-2 enzyme inhibition. Our concise total synthesis of ochnaflavone enable us to provide sufficient quantities of material for advanced biological studies as well as to efficiently prepare derivatives for structure-activity relationship study.

Keywords

References

  1. Ruckstuhl, M.; Beretz, A.; Anton, R.; Landry, Y. Biochem. Pharmacol. 1979, 28, 535. https://doi.org/10.1016/0006-2952(79)90249-1
  2. Iwu, M. M.; Igboko, O. A.; Okunji, C. O.; Tempesta, M. S. J. Pharm. Pharmacol. 1990, 42, 290. https://doi.org/10.1111/j.2042-7158.1990.tb05412.x
  3. Amella, M.; Bronner, C.; Briancon, F.; Hagg, M.; Anton, R.; Landry, Y. Planta Med. 1985, 51, 16. https://doi.org/10.1055/s-2007-969381
  4. Sun, C.-M.; Syu, W.-J.; Huang, Y.-T.; Chen, C.-C.; Ou, J.-C. J. Nat. Prod. 1997, 60, 382. https://doi.org/10.1021/np960608e
  5. Lin, Y.-M.; Flavin, M. T.; Cassidy, C. S.; Mar, A.; Chen, F.-C. Bioorg. Med. Chem. Lett. 2001, 11, 2101. https://doi.org/10.1016/S0960-894X(01)00382-1
  6. Chen, J.; Chang, H. W.; Kim, H. P.; Park, H. BioOrg. Med. Chem. Lett. 2006, 16, 2373. https://doi.org/10.1016/j.bmcl.2006.01.117
  7. Che, H.; Park, B. K.; Lim, H.; Kim, H. P.; Chang, H. W; Jeong, J.-H.; Park, H. BioOrg. Med. Chem. Lett. 2009, 19, 74. https://doi.org/10.1016/j.bmcl.2008.11.017
  8. Okigawa, M.; Kawano, N. Tetrahed. Lett. 1973, 22, 2003.
  9. Son, K. H.; Park, J. O.; Chung, K. C.; Chang, H. W.; Kim, H. P.; Kim, J. S.; Kang, S. S. Arch. Pharm. Res. 1992, 15, 365. https://doi.org/10.1007/BF02974114
  10. Chang, H. W.; Baek, S. H.; Chung, K. W.; Son, K. H.; Kim, H. P.; Kang, S. S. Biochem. Biophys. Res. Comm. 1994, 205, 843. https://doi.org/10.1006/bbrc.1994.2741
  11. Lee, S. J.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Arch. Pharm. Res. 1997, 20, 533. https://doi.org/10.1007/BF02975207
  12. Suh, S. J.; Jin, U. H.; Kim, S. H.; Chang, H. W.; Son, J. K.; Lee, S. H.; Son, K. H.; Kim, C. H. J. Cell. Biochem. 2006, 99, 1298. https://doi.org/10.1002/jcb.20912
  13. Suh, S. J.; Chung, T. W.; Son, M. J.; Kim, S. H.; Moon, T. C.; Son, K. H.; Kim, H. P.; Chang, H. W.; Kim, C. H. Arch. Biochem. Biophy. 2010, 493, 249. https://doi.org/10.1016/j.abb.2009.11.005
  14. Moon, T. C.; Hwang, H. S.; Quan, Z.; Son, K. H.; Kim, C. H.; Kim, H. P.; Kang, S. S.; Son, J. K.; Chang, H. W. Biol. Pharm. Bull. 2006, 29, 2359. https://doi.org/10.1248/bpb.29.2359
  15. Reutrakul, V.; Ningnuek, N.; Pohmakotr M.; Yoosook, C.; Napaswad, C.; Kasisit, J.; Santisuk, T.; Tuchinda, P. Planta Med. 2007, 73, 683. https://doi.org/10.1055/s-2007-981538
  16. Kang, S. S.; Lee, J. Y.; Choi, Y. K.; Song, S. S.; Kim, J. S.; Jeon, S. J.; Han, Y. N.; Son, K. H.; Han, B. H. BioOrg. Med. Chem. Lett. 2005, 15, 3588. https://doi.org/10.1016/j.bmcl.2005.05.078
  17. Park, H.; Tran, T. D.; Kim, H.-P. Eur. J. Med. Chem. 2005, 40, 943. https://doi.org/10.1016/j.ejmech.2005.04.013
  18. Pham, T.-A.; Che, H.; Phan, P.-T.; Lee, J.-W.; Kim, S.-S.; Park, H. BioOrg. Med. Chem. Lett. 2012, 22, 2534. https://doi.org/10.1016/j.bmcl.2012.01.135
  19. Okigawa, M.; Kawano, N.; Aquil, M.; Rahman, W. J.C.S. Perkin I 1976, 580.
  20. Tran, T. D.; Chi, Y. S.; Kim, J.; Kim, H.-P.; Kim, S.; Park, H. Arch. Pharm. Res. 2003, 26, 345. https://doi.org/10.1007/BF02976690
  21. Tran, T. D.; Truong, N. T.; Park, H. Arch. Pharm. Res. 2005, 28, 652.

Cited by

  1. (Ochnaceae) vol.14, pp.11, 2017, https://doi.org/10.1002/cbdv.201700241
  2. and NO Production Against LPS-treated RAW 264.7 Cells vol.38, pp.6, 2017, https://doi.org/10.1002/bkcs.11140