DOI QR코드

DOI QR Code

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Received : 2014.05.12
  • Accepted : 2014.07.09
  • Published : 2014.11.20

Abstract

A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Keywords

References

  1. Banerjee, R.; Furukawa, H.; Britt, D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875. https://doi.org/10.1021/ja809459e
  2. Ferey, G. Chem. Soc. Rev. 2008, 37, 191. https://doi.org/10.1039/b618320b
  3. Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. https://doi.org/10.1038/nature01650
  4. Rowsell, J. L. C.; Yaghi, O. M. J. Micro. Meso. Mater. 2004, 73(1-2), 3. Elsevier Inc. All rights reserved https://doi.org/10.1016/j.micromeso.2004.03.034
  5. Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T. J. AIChE. 2004, 50, 1090. https://doi.org/10.1002/aic.10101
  6. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477. https://doi.org/10.1039/b802426j
  7. Ma, S.; Zhou, H. C. Chem. Commun. 2010, 44.
  8. Wang, Q. M.; Shen, D.; Bulow, M.; Lau, M.; Deng, S.; Fitch, F. R.; Lemcoff, N. O.; Semanscin, J. J. Micro. Meso. Mater. 2002, 55(2), 217. https://doi.org/10.1016/S1387-1811(02)00405-5
  9. Saha, D.; Wei, Z.; Deng, S. Int. J. Hydrogen Energy 2008, 33(24), 7479. https://doi.org/10.1016/j.ijhydene.2008.09.053
  10. Saha, D.; Deng, S. J. Chem. Eng. Data 2009, 54, 2245. https://doi.org/10.1021/je9000087
  11. Saha, D.; Wei, Z.; Deng, S. Approach. Sep. Purif. Technol. 2009, 64, 280. https://doi.org/10.1016/j.seppur.2008.10.022
  12. An, J.; Geib, S. J.; Rosi, N. L. J. Am. Chem. Soci. 2009, 131, 8376. https://doi.org/10.1021/ja902972w
  13. Allendorf, M. D.; Bauer, C. A.; Bhaktaa, R. K.; Houka, R. J. T. Chem. Soci. Rev. 2009, 38, 1330. https://doi.org/10.1039/b802352m
  14. Hadi, H.; Hamid, A.; Ali, D.; Akbar, B.; Ali, R. F.; Mostafa, M. A. Electrochimica Acta 2013, 88, 301. https://doi.org/10.1016/j.electacta.2012.10.064
  15. Serre, C.; Millange, F.; Surble, S.; Ferey, G. Angew. Chem. Int. Ed. Engl. 2004, 43(46), 6285. https://doi.org/10.1002/anie.200454250
  16. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. J. Am. Chem. Soc. 2008, 130(21), 6774. https://doi.org/10.1021/ja710973k
  17. Park, Y. K.; Choi, S. B.; Kim, H.; Kim, K.; Won, B. H.; Choi, K.; Choi, J. S.; Ahn, W. S.; Won, N.; Kim, S.; Jung, D. H.; Choi, S. H.; Kim, G. H.; Cha, S. S.; Jhon, Y. H.; Yang, J. K.; Kim, J. Angew. Chem. Int. Ed. Engl. 2007, 46(43), 8230. https://doi.org/10.1002/anie.200702324
  18. Kuppler, R. J.; Timmons, D. J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C. Coord. Chem. Rev. 2009, 253(23-24), 3042. https://doi.org/10.1016/j.ccr.2009.05.019
  19. Dongmei, J.; Tamas, M.; Daniel, M. M.; Atsushi, U.; Alfons, B. J. Catal. 2010, 270(1), 26. https://doi.org/10.1016/j.jcat.2009.12.002
  20. Xamena, F. X. L.; Casanova, O.; Tailleur, R. G.; Garcia, A. C. H.; J. Catal. 2008, 255(2), 220. https://doi.org/10.1016/j.jcat.2008.02.011
  21. Zhang, C. Y.; Wang, M. Y.; Liu, L.; Yang, X. J.; Xu, X. Y. Electrochem. Commun. 2013, 33, 131. https://doi.org/10.1016/j.elecom.2013.04.026
  22. Isaeva, V. I.; Tkachenko, O. P.; Afonina, E. V.; Kozlova, L. M.; Kapustin, G. I.; Grunert, W.; Solov'eva, S. E.; Antipin, I. S.; Kustov, L. M. J. Micro. Meso. Mater. 2013, 166, 167. https://doi.org/10.1016/j.micromeso.2012.04.030
  23. Song, F.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W. J. Am. Chem. Soc. 2010, 132(43), 15390. https://doi.org/10.1021/ja1069773
  24. Cho, S. H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. Chem. Commun. 2006, 2563.
  25. Brown, K.; Zolezzi, S.; Aguirre, P.; Yazigi, D. V.; Garcia, V. P.; Baggio, R.; Novak, M. A.; Spodine, E. Dalton. Trans. 2009, 38, 1422.
  26. Nam, T. S. P.; Ky, K. A. L.; Tuan, D. P. Appl. Catal. A 2010, 382(2), 246. https://doi.org/10.1016/j.apcata.2010.04.053
  27. Zhou, Y.; Song, J.; Liang, S.; Hu, S.; Liu, H.; Jiang, T.; Han, B. J. Mol. Catal. A 2009, 308(1-2), 68. https://doi.org/10.1016/j.molcata.2009.03.027
  28. Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276. https://doi.org/10.1038/46248
  29. Rafael, A.; Sarmiento, P.; Albelo, L. M. R.; Ariel, G.; Miguel, A. P.; Dewi, W. L.; Salvador, A. R. R. J. Micro. Meso. Mater. 2012, 163, 186. https://doi.org/10.1016/j.micromeso.2012.07.011
  30. Zhao, Z. X.; Ma, X. L.; Li, Z.; Lin, Y. S. J. Membrane Science 2011, 382(1-2), 82. https://doi.org/10.1016/j.memsci.2011.07.048
  31. Wolfgang, K.; Marek, M.; Alfons, B. Thermochimica Acta 2010, 499(1-2), 71. https://doi.org/10.1016/j.tca.2009.11.004
  32. Sabine, O.; Stefan, T.; Enrico, D.; Antje, H.; Stefan, K.; Elias, K. Catal. Commun. 2008, 9(6), 1286. https://doi.org/10.1016/j.catcom.2007.11.019
  33. Toan, V. V.; Hendrik, K.; Axel, S.; Jorg, H.; Eckhard, P.; Henrik, L.; Udo, K.; Matthias, S.; Gerhard, F. J. Micro. Meso. Mater. 2012, 154, 100. https://doi.org/10.1016/j.micromeso.2011.11.052
  34. Muller, M.; Hermes, S.; Kahler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Chem. Mater. 2008, 20(14), 4576. https://doi.org/10.1021/cm703339h
  35. Lihong, H.; Jie, Z.; Andrew, T. H.; Rongrong, C. Int. J. Hydrogen Energy 2013, 38(34), 14550. https://doi.org/10.1016/j.ijhydene.2013.09.068
  36. Narges, H.; Mehran, R. Fuel 2013, 113, 571. https://doi.org/10.1016/j.fuel.2013.06.013
  37. Guofeng, Z.; Jun, H.; Zheng, J.; Shuo, Z.; Li, C.; Yong, L. Appl. Catal. B 2013, 140-141, 249. https://doi.org/10.1016/j.apcatb.2013.04.015
  38. Raju, G.; Reddy, P. S.; Ashok, J.; Reddy, B. M.; Venugopal, A. J. Natural Gas Chem. 2008, 17(3), 293. https://doi.org/10.1016/S1003-9953(08)60067-5
  39. Liu, Y. Y.; Ng, Z. F.; Easir, A. K.; Jeong, H. K.; Ching, C. B.; Lai, Z. P. J. Micro. Meso. Mater. 2009, 118(1-3), 296. https://doi.org/10.1016/j.micromeso.2008.08.054
  40. Huang, L. M.; Wang, H. T.; Chen, J. X.; Wang, Z. B.; Sun, J. Y.; Zhao, D. Y.; Yan, Y. H. J. Micro. Meso. Mater. 2003, 58(2), 105. https://doi.org/10.1016/S1387-1811(02)00609-1
  41. Zhao, H. H.; Song, H. L.; Chou, L. J. Inorg. Chem. Commun. 2012, 15, 261. https://doi.org/10.1016/j.inoche.2011.10.040
  42. Jia, Z.; Li, H. B.; Yu, Z. X.; Wang, P.; Fan, X. L. Mater. Lett. 2011, 65, 2445. https://doi.org/10.1016/j.matlet.2011.04.099
  43. Edson, V. P.; Kenneth, J. B. J.; John, P. F.; Inga, H. M. J. Membrane Science 2009, 328(1-2), 165. https://doi.org/10.1016/j.memsci.2008.12.006
  44. Gao, S. X.; Zhao, N.; Shu, M. H.; Che, S. N. Appl. Catal. A 2010, 388(1-2), 196. https://doi.org/10.1016/j.apcata.2010.08.045
  45. Peng, M. M.; Hyun, T. J.; Muthiahpillai, P. Int. J. Control. Autom. 2013, 6, 1.
  46. Suman, K. J.; Peng, W.; Takashi, T. J. Catal. 2006, 240(2), 268. https://doi.org/10.1016/j.jcat.2006.03.021

Cited by

  1. p-p Heterojunction of Nickel Oxide-Decorated Cobalt Oxide Nanorods for Enhanced Sensitivity and Selectivity toward Volatile Organic Compounds vol.10, pp.1, 2014, https://doi.org/10.1021/acsami.7b14545
  2. On the Synthesis and Characterization of Lanthanide Metal-Organic Frameworks vol.1, pp.1, 2018, https://doi.org/10.3390/ceramics1010006
  3. Nanoporous Carbon Derived from MOF-5: A Superadsorbent for Copper Ions vol.3, pp.12, 2014, https://doi.org/10.1021/acsomega.8b02278
  4. Facile synthesis of Ni-MOF using microwave irradiation method and application in the photocatalytic degradation vol.6, pp.11, 2014, https://doi.org/10.1088/2053-1591/ab5261
  5. Effect of the cobalt and zinc ratio on the preparation of zeolitic imidazole frameworks (ZIFs): synthesis, characterization and supercapacitor applications vol.48, pp.39, 2014, https://doi.org/10.1039/c9dt03306h
  6. Synthesis of Defect‐Engineered Homochiral Metal‐Organic Frameworks Using L ‐Amino Acids: A Comprehensive Study of Chiral Catalyst Performance in CO 2 Fix vol.5, pp.33, 2014, https://doi.org/10.1002/slct.202002897
  7. Strategies in Metal- ORGANIC FRAMEWORK‐BASED Catalysts for the Aerobic Oxidation of Alcohols and Recent Progress vol.42, pp.3, 2014, https://doi.org/10.1002/bkcs.12197
  8. In-situ development of metal organic frameworks assisted ZnMgAl layered triple hydroxide 2D/2D hybrid as an efficient photocatalyst for organic dye degradation vol.270, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2020.128616
  9. A Review on Selective Production of Acetophenone from Oxidation of Ethylbenzene over Heterogeneous Catalysts in a Decade vol.151, pp.7, 2014, https://doi.org/10.1007/s10562-020-03474-8
  10. Metal-organic framework based electrode materials for lithium-ion batteries: a review vol.11, pp.47, 2021, https://doi.org/10.1039/d1ra05073g
  11. Bifunctional Ag@Ni-MOF for high performance supercapacitor and glucose sensor vol.282, pp.None, 2014, https://doi.org/10.1016/j.synthmet.2021.116931
  12. Electrocatalytic performance of NiNH2BDC MOF based composites with rGO for methanol oxidation reaction vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-92660-8
  13. Electrocatalytic study of NiO-MOF with activated carbon composites for methanol oxidation reaction vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-96794-7