• Title/Summary/Keyword: Ni-MOF-5

Search Result 3, Processing Time 0.021 seconds

Influence of Urea Precursor on the Electrochemical Properties of Ni-Co-based Metal Organic Framework Electrodes for Supercapacitors

  • Jung, Ye Seul;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.523-531
    • /
    • 2022
  • A NiCo-metal organic framework (MOF) electrode, prepared using urea as a surfactant, was synthesized using a one-pot hydrothermal method. The addition of urea to the NiCo-MOF creates interstitial voids and an ultra-thin nanostructure in the NiCo-MOF, which improves its charge transfer performance. We obtained the optimal metal to surfactant ratio to achieve the best specific capacitance. The NiCo-MOF was employed as the working electrode material in a three-electrode system. Field emission scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy were employed to characterize the microstructures and morphologies of the composites. Cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy curves were employed to quantify the electrochemical properties of the electrodes in a 6 M KOH electrolyte.

Oxidation of Ethylbenzene Using Nickel Oxide Supported Metal Organic Framework Catalyst

  • Peng, Mei Mei;Jeon, Ung Jin;Ganesh, Mani;Aziz, Abidov;Vinodh, Rajangam;Palanichamy, Muthiahpillai;Jang, Hyun Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.11
    • /
    • pp.3213-3218
    • /
    • 2014
  • A metal organic framework-supported Nickel nanoparticle (Ni-MOF-5) was successfully synthesized using a simple impregnation method. The obtained solid acid catalyst was characterized by Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption and thermogravimetric analysis (TGA). The catalyst was highly crystalline with good thermodynamic stability (up to $400^{\circ}C$) and high surface area ($699m^2g^{-1}$). The catalyst was studied for the oxidation of ethyl benzene, and the results were monitored via gas chromatography (GC) and found that the Ni-MOF-5 catalyst was highly effective for ethyl benzene oxidation. The conversion of ethyl benzene and the selectivity for acetophenone were 55.3% and 90.2%, respectively.

Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene

  • Lee, Ji-Sun;Halligudi, Shiva B.;Jang, Nak-Han;Hwang, Dong-Won;Chang, Jong-San;Hwang, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1489-1495
    • /
    • 2010
  • A porous coordination solid of nickel(II) dihydroxyterephthalate has been synthesized by the microwave-assisted (MW) method. The synthesized nickel(II) dihyroxylterephthalate was designated by the general formula of [$Ni_2$(dhtp) $(H_2O)_2]{\cdot}8H_2O$ (where, dhtp = 2,5-dihydroxyterephthalate, denoted by Ni-DHTP). The effect of microwave-irradiation temperature and time of irradiation on the porosity and morphological changes in the solids have also been investigated. The catalytic performance of Ni-DHTP synthesized by MW method has been studied in the oxidation of cyclohexene with aqueous $H_2O_2$, which gave cyclohexene oxide as the primary product and 2-cyclohexene-1-ol as a major product.