DOI QR코드

DOI QR Code

LTE-Based Macro Base Station Platform Architecture

LTE 기반 Macro 기지국 Platform 구조 연구

  • Received : 2014.05.30
  • Accepted : 2014.08.20
  • Published : 2014.09.30

Abstract

This paper shows the research of a platform architecture relates to the LTE-based macro basestation; the proposed platform architecture is designed with the interface between the baseband signal and IF (Intermediate Frequency) per codeword. Using this method, we can smoothly transmit/receive a large amounts of data regardless of the number of antenna in a macro base station which is used technology such as massive MIMO. In this paper, We analyzed the evolution of LTE technology and the trend in the development of the LTE-based system. For validation of the proposed architecture, we compare the general architecture of a conventional with the proposed architecture. From the calculation results of transmission quantity data, we see that the proposed architecture can give better performance than the existing architecture. By presenting this architecture, we hope to provide a new foundation for Design and Implementation of a LTE base station platform which is used technology such as massive MIMO, carrier aggregation (CA), coordinated multi point (CoMP).

본 논문은 long term evolution (LTE) 기반 macro 기지국 platform 구조 연구에 관한 것으로, codeword별 기저 대역 신호 (baseband signal)와 중간 주파수 (intermediate frequency; IF)에 대한 인터페이스 구조를 제안한다. 제안한 구조를 이용하여 massive multiple input multiple output (MIMO) 기술과 같이, 많은 수의 안테나를 사용하는 기지국에 있어서, 안테나수와 상관없이 대용량의 데이터를 원활히 송수신 할 수 있다. 본 논문에서는 LTE 표준 기술 발전 및 그에 따른 시스템의 개발 동향을 분석하고, 종래의 일반적인 구조와 본 논문에서 제안하는 구조에 대하여 비교하여, 데이터 인터페이스 전송량 측면에서 제안 구조가 훨씬 더 좋은 구조임을 확인하였다. 이러한 구조를 제시함으로서 massive MIMO, carrier aggregation (CA), coordinated multi point (CoMP) 기술과 같이 발전하고 있는 LTE 기반 기지국의 플랫폼 (platform) 설계 및 구현에 대하여 새로운 기반을 제공하고자 한다.

Keywords

References

  1. M. C. Jung and S. Y. Choi, "Optimal number of base station antennas and users in MF based multiuser massive MIMO systems," J. KICS, vol. 38A, no. 8, pp. 724-732, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.724
  2. B. H. Shim and B. J. Lee, "Evolution of MIMO technology," J. KICS, vol. 38A, no. 8, pp. 712-723, Aug. 2013. https://doi.org/10.7840/kics.2013.38A.8.712
  3. H. Jakob, S. ten Brink, and M. Debbah, "Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?," IEEE J. Selected Areas Commun., vol. 31, no. 2, pp. 160-171, Feb. 2013. https://doi.org/10.1109/JSAC.2013.130205
  4. E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014.
  5. S. Zukang, A. Papasakellariou, J. Montojo, D. Gerstenberger, and X. Fangli, "Overview of 3GPP LTE-advanced carrier aggregation for 4G wireless communications," IEEE Commun. Mag., vol. 50, no. 2, pp. 122-130, Feb. 2012.
  6. G. Yuan, X. Zhang, W. Wang, and Y. Yang, "Carrier aggregation for LTE-advanced mobile communication systems," IEEE Commun. Mag., vol. 48, no. 2, pp. 88-93, Feb. 2010.
  7. A. Davydov, G. Morozov, I. Bolotin, and A. Papathanassiou, "Evaluation of joint transmission CoMP in C-RAN based LTE-A HetNets with large coordination areas," in Proc. IEEE Globecom Workshops (GC Wkshps), pp. 801-806, Atlanta, GA, Dec. 2013.
  8. A. Nagate, S. Nabatame, D. Ogata, K. Hoshino, and T. Fujii, "Field experiment of CoMP joint transmission over X2 interface for LTE-Advanced," in Proc. IEEE VTC, pp. 1-5, Dresden, Germany, Jun. 2013.
  9. M. Sarker, et al., "FPGA-based MIMO testbed for LTE applications," in Proc. Wirel. Optical Commun. Netw. (WOCN), pp. 1-5, Paris, France, May 2011.
  10. H. Bachir, G. Zaharia, and G. El Zein, "Digital block design of MIMO hardware simulator for LTE applications," in Proc. Commun.(ICC), pp. 4489-4493, Ottawa, Canada, Jun. 2012.
  11. Y. Lu, et al., "Design and system performances of a dual-band 4-port MIMO antenna for LTE applications," IEEE Trans. Antennas Propaga. (APSURSI), pp. 2227-2230, Spokane, USA, Jul. 2011.
  12. N. Miyazaki, S. Nanba, and S. Konishi, "MIMO-OFDM throughput performances on MIMO antenna configurations using LTEbased testbed with 100 MHz bandwidth," in Proc. IEEE VTC, pp. 1-5, Ottawa, Canada, Sept. 2010.
  13. ALTERA Software Defined Radio, Retrieved Apr. 17, 2014, from http://www.altera.com.
  14. CPRI Specification V6.0, Retrieved May, 23, 2014, from http://www.cpri.info.
  15. H. S. Kim, T. H. Hong, and Y. S. Cho, "A cell selection technique considering MIMO precoding," J. KICS, vol. 37A, no. 12, pp. 1076-1084, Dec. 2012. https://doi.org/10.7840/kics.2012.37A.12.1076
  16. J. H. Koo, Y. S. Kim, and J. S. Kim, "An extendable fixed-complexity sphere decoder for downlink multi-user MIMO communication system," J. KICS, vol. 39A, no. 4, pp. 180-187, Apr. 2014. https://doi.org/10.7840/kics.2014.39A.4.180
  17. 3GPP, Physical channels and modulation (Release 12), 3GPP TS36.211 v12.1.0, Mar. 2014.
  18. C. B. Jeong, Y. H. Lee, and H. D. Bae, "A study on the architecture of modem & IF for high-capacity transmission," in Proc. KICS, pp. 265-266, Jan. 2014.
  19. TI, Retrieved Feb., 24, 2014, from http://www.ti.com.
  20. TI, KeyStone architecture bit rate coprocessor (BCP) User Guide, TI SPRUGZ1, Aug. 2011.