DOI QR코드

DOI QR Code

Analysis of Correlation Coefficient Between Movements of Thoracoabdominal Tumors and External Respiration Using Image Guided Radiotherapy(IGRT)

영상유도 방사선치료장치(IGRT)를 이용한 흉·복부 종양의 움직임과 외부호흡과의 상관관계 분석

  • 김가중 (극동대학교 방사선학과) ;
  • 홍주연 (충북대학교 대학원 의학과 의료정보학 및 관리학교실) ;
  • 한상현 (서남대학교 방사선학과)
  • Received : 2014.05.29
  • Accepted : 2014.06.23
  • Published : 2014.09.28

Abstract

This study measured and analyzed the correlation coefficient between movements of thoracoabdominal tumors and external respiration in a free-breathing state, using cyberknife image guided radiotherapy(IGRT). This study subjects included a total of 30 patients with lung tumors(n=10), liver tumors(n=10) and pancreatic tumor(n=10) who underwent radiotherapy, and the movements of tumors were analyzed using converted log data of the tumor motion tracking system(MTS). In a free-breathing state, In relation to Peason's correlation coefficient between external respiration and lung tumors in the entire treatment process, the correlation coefficient was 0.646(p<0.05) in the cranio-caudal direction, 0.365(p<0.088) in the left and right direction and 0.196(p<0.115) in the antero-posterior direction. The correlation coefficient of liver tumors was 0.841(p<0.000) in the cranio-caudal direction, 0.346 (p<0.179) in the left and right direction and 0.691(p<0.001) in the antero-posterior direction. The correlation coefficient of Pancreatic tumors was 0.683(p<0.000) in the cranio-caudal direction, 0.397(p<0.006) in the left and right direction and 0.268(p<0.127) in the antero-posterior direction. In conclusion, the measurement findings of thoracoabdominal tumor movement using IGRT would be helpful in determining an accurate target volume. Moreover, the analysis of correlation between external respiration and movements of internal tumors would provide important information to correct movements of tumors for diverse radiotherapy techniques.

본 연구는 자유로운 호흡 상태에서 사이버나이프 영상유도 방사선 치료장치(IGRT)를 이용하여 흉 복부 종양의 움직임과 외부호흡과의 상관관계 측정하여 분석하였다. 대상은 방사선 치료를 시행한 폐종양(n=10), 간종양(n=10), 췌장암(n=10) 환자 총 30명으로, 종양추적시스템(MTS)의 로그 데이터를 변환하여 분석하였다. 자유로운 호흡 중에서 폐종양과 외부호흡의 Peason 상관관계는 두미 방향 0.646(p<0.05), 좌우 방향 0.365(p<0.088), 전후 방향 0.196(p<0.115)로 나타났다. 간종양의 상관관계는 두미 방향 0.841(p<0.000), 좌우 방향 0.346 (p<0.179), 전후 방향 0.691(p<0.001)로 나타났다. 췌장 종양의 상관관계는 두미 방향 0.683(p<0.000), 좌우 방향에서는 0.397(p<0.006), 전후 방향 0.268(p<0.127)로 나타났다. 영상유도장치를 이용한 흉 복부 종양의 움직임 측정 결과는 정확한 치료 체적의 결정에 유용하게 적용할 수 있을 것이다. 또한 외부 호흡과 내부 종양 움직임의 상관관계를 분석을 통하여 다양한 방사선 치료 기술에서 종양의 움직임을 보상해 줄 수 있는 중요한 정보를 제공할 것이다.

Keywords

References

  1. S. Webb, "Optimization of conformal radiotherapy dose distribution by simulated annealing," Phy Med Biol, Vol.34, pp.1349-1370, 1989. https://doi.org/10.1088/0031-9155/34/10/002
  2. P. J. Keall, G. S. Mageras, and J. M. Balter, "The management of respiratory motion in radiation oncology report of AAPM TG 76," Med Phys, Vol.33, pp.3874-3900, 2006. https://doi.org/10.1118/1.2349696
  3. E. C. Ford, G. S. Mageras, and E. Yorke, "Evaluation of respiratory movement during gated radiotherapy using film and electronic portal imaging," Int J Radiat Oncol Biol Phys, Vol.52, No.2, pp.522-531, 2002. https://doi.org/10.1016/S0360-3016(01)02681-5
  4. P. Giraud, Y. De Rycke, and B. Dubray, "Conformal radiotherapy (CRT) planning for lung cancer: analysis of intrathoracic organ motion during extreme phases of breathing," Int J Radiat Oncol Biol Phys, Vol.51, No.4, pp.1081-1092, 2001. https://doi.org/10.1016/S0360-3016(01)01766-7
  5. S. S. Vedam, V. R. Kini, and P. J. Keall, "Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker," Med Phys, Vol.30, No.4, pp.505-513, 2003. https://doi.org/10.1118/1.1558675
  6. G. S. Mageras, A. Pevsner, and E. D. Yorke, "Measurement of lung tumor motion using respiration-correlated CT," Int J Radiat Oncol Biol Phys, Vol.60, No.3, pp.933-941, 2004. https://doi.org/10.1016/j.ijrobp.2004.06.021
  7. D. Mah, J. Hanley, and K. E. Rosenweig, "Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer," Int J Radiat Oncol Bio Physics, Vol.48, pp.1175-1185, 2000. https://doi.org/10.1016/S0360-3016(00)00747-1
  8. J. W. Wong, M. B. Sharpe, and D. A. Jaffray, "The use of active breathing control (ABC) to reduce margin for breathing motion," Int J Radiat Oncol Bio Physics, Vol.44, pp.911-919, 1999. https://doi.org/10.1016/S0360-3016(99)00056-5
  9. H. D. Kubo and B. C. Hill, "Respiration gated radiotherapy treatment: A technical study," Phys Med Biol, Vol.41, pp.83-91, 1996. https://doi.org/10.1088/0031-9155/41/1/007
  10. A. Reinhart, B. S. C. Sweeney, and A. Winfried, "Compensating for tumor motion by 6-degree-of-freedom treatment couch: is patient tolerance an issue," Int J Radiat Oncol Biol Phys, Vol.74, pp.186-171, 2009.
  11. P. J. Keall, S. Joshi, and S. S. Vedam, "Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking," Med Phys, Vol.32, pp.942-951, 2005. https://doi.org/10.1118/1.1879152
  12. E. A. Barnes, B. R. Murray, and D. M. Robinson, "Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration," Int J Radiat Oncol Biol Phys, Vol.50, No.4, pp.1091-1098, 2001. https://doi.org/10.1016/S0360-3016(01)01592-9
  13. I. Suramo, M. Paivansalo, and V. Myllyla, "Cranio-caudal movements of the liver, pancreas and kidneys in respiration," Acta Radiol Diagn (Stockh), Vol.25, No.2, pp.129-131, 1984. https://doi.org/10.1177/028418518402500208