DOI QR코드

DOI QR Code

Research of Early-age Strength Development Technology for Remove the Steel Form of Large-wide Tunnel Lining Concrete

대단면 터널 라이닝 거푸집의 조기 제거를 위한 초기 강도 발현 기법 연구

  • 김광돈 ((주)고려이엔씨기술사사무소) ;
  • 이득복 (롯데건설(주) 강남순환도시고속도로(6-2공구) 현장, 서울시립대학교 대학원)
  • Received : 2014.07.09
  • Accepted : 2014.08.08
  • Published : 2014.09.30

Abstract

The studies were carried out to process one cycle for a day to the large section tunnel lining concrete. Climatic characteristics of the tunnel inside are changed, when the temperature of the concrete placement is low, the mold remove time is increased that the heat of hydration speed be delayed because affects the strength development, to compensate for this, after installing the curing sheet on both sides of the steel form and installation of tunnel entrance, when it comes to providing the additional heat source of $28{\pm}2^{\circ}C$ therein, it was to be achieved early strength development control standards (4.5MPa) presented as a crack control scheme or more, thus, It was able to remove after age of 14hr from mold. On the other hand, under the conditions of $10{\pm}1^{\circ}C$ that a natural curing temperature in the tunnel, it was analyzed must ensure the curing time of 36hr or more after concrete placement. Throughout this study, the concrete strength development and the temperature in the early-age concrete, it can find that reverify the curing temperature is greatly affected, even concrete fly ash is mixed 10%, if it is possible to raise the surface temperature for a predetermined time, is not a problem in the early strength development.

대단면 터널 라이닝 콘크리트를 1일에 1cycle로 진행하기 위한 연구를 수행하였다. 터널 내부의 기후특성이 변화하고 콘크리트 타설온도가 낮은 경우에는 수화발현 속도도 지연되어 강도발현에 영향을 미치게 되므로 거푸집의 존치시간이 길어지게 된다. 이를 보완하기 위하여 갱문의 설치와 갱폼의 양쪽에 양생막을 설치한 후, 그 내부에 $28{\pm}2^{\circ}C$의 추가적인 열원을 공급하게 되면 균열관리방안으로 제시한 관리 기준 (4.5MPa) 이상의 조기강도발현을 이루어 낼 수 있었으며, 따라서 거푸집을 재령 14hr 후에 제거할 수가 있었다. 한편, 터널내 자연양생온도인 $10{\pm}1^{\circ}C$ 조건에서는 콘크리트 타설 후 36hr 이상의 양생시간을 확보해야 되는 것으로 분석되었다. 본 연구를 통하여, 초기재령에서의 콘크리트 온도와 강도발현은 양생온도가 크게 작용하고 있음을 재확인 할 수 있었으며, 플라이애쉬가 10% 혼입된 콘크리트라도 일정 시간동안 거푸집의 표면온도를 상승시켜 줄 수 있다면 조기강도발현에는 문제가 되지 않는 것으로 나타났다.

Keywords

References

  1. A. M. Neville (1996), Property of Concrete, 4th edition, John Wiley & Sons, New York, 269-284.
  2. ASTM C 1074-98, Standard Practice for Estimating Concrete Strength by the Maturity Method, Volume 04.02, (1999), 540-547.
  3. Jang, H. S. (2011), study on ultrasonic velosity and rebound hardness method for structural properties of concrete with mixed fly ash according to the replacement ratio of recycled coarse aggregate, Master's thesis, Hanyang University, Department of Civil Engineering (in Korean).
  4. Jeon, S. E., Kim, W. Y. (2009), A Study on Crack Control of Tunnel Lining Concrete with Large Section, Korea Concrete Institute, Technology article, 21(2), 42-49 (in Korean).
  5. Jeong, D. K., Lee, H. S. (2010), The Effect of Curing Temperature for Strength Development in RPC, Korea Concrete Institute, 22(2), 177-178 (in Korean).
  6. Kim, K. D. (2009), A Study on the Early-Age Strength Increasing by Monitoring of Concrete Temperature Hysteresis, Ph.D. dissertation, Joongbu University, Department of Civil Engineering (in Korean).
  7. Kim, K. D., Kim, C. H. (2007), Study for the Strength Mechanism and Thermal Control of the Curing Concrete by Early Age, Korea Concrete Institute, 19(2), 1049-1052 (in Korean).
  8. Kim, K. D., Kim, C. H. (2010), The Characteristics of Strength Development and Curing Cycle of the Steam Cured Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 14(5), 63-71 (in Korean).
  9. Kim, K. D., Kim, C. H., Choi, H. S., Jeon, C. K. (2009) Evaluation of Strength and Temperature Hysteresis of the Steam Cured Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 2009-1, 277-278 (in Korean).
  10. Kim, K. D., Kim, C. H., Kim, J. C., Oh, S. Y. (2007), An Experimental Study on the Effect of the Atmosphere Curing Condition on Mass Concrete, Korea Concrete Institute, 19(1), 791-794 (in Korean).
  11. Kim, K. D., Kim, C. H., Lee, C. Y., Hwang, M. K. (2006), An Experimental Study on the Effect of the Early Age Curing Condition on Mass Concrete, Korea Concrete Institute, 18(2), 685-688 (in Korean).
  12. Ko, H. B. (1998), The Effect of Curing Temperature History on Concrete Strength Development, Korea Concrete Institute, 10(5), 89-100 (in Korean).
  13. Lee, I. K., Kim, K. D., Kim, J. S., Kim, T. Y. (2010), Heat of Hydration and Thermal Crack Control for Floating Concrete Mass Foundation, Journal of the Korea Institute for Structural Maintenance and Inspection, KSMI, 14(1), 156-164 (in Korean).
  14. Lee, J. K., Jeong, H. M., Kim, K. H., Namkoong, Y. H., Park, C. K. (2005), The Application of Hydration Heat to Form Removal of Lining Concrete in Tunnel, Korea Concrete Institute, Construction article, 17(5), 65-68 (in Korean).
  15. Ministry of Land, Transport and Maritime Affairs (2009), Concrete Standard Specification, Korea Concrete Institute (in Korean).
  16. Ministry of Land, Transport and Maritime Affairs (2009), Tunnel Standard Specification (in Korean).