DOI QR코드

DOI QR Code

3G, 4G LTE 환경에 적합한 0.11μm CMOS 저전력, 광대역의 저잡음증폭기 설계

0.11μm CMOS Low Power Broadband LNA design for 3G/4G LTE Environment

  • 투고 : 2014.07.28
  • 심사 : 2014.09.19
  • 발행 : 2014.09.30

초록

3G부터 4G LTE까지의 전체 대역에 적용이 가능한 저전력, 광대역 저잡음증폭기를 설계하였다. 설계한 광대역 다중입력 저잡음증폭기는 기존의 3G인 CDMA의 대역인 1.2GHz대역과 LTE대역인 2.5GHz대역까지 넓은 주파수 대역을 안정적으로 증폭이 가능하고, 다중입력방식을 통해 입력신호의 크기에 관계없이 안정적인 증폭이 가능하도록 설계하였다. 설계된 저잡음증폭기는 1.2V의 공급전압에서 약 0.6mA의 전류를 소모하고, 이는 Cadence사의 컴퓨터 시뮬레이션을 통해 검증하였다. 낮은 입력신호에 대응한 증폭은 최대 20dB이고, 신호에 따라 최저 -10dB의 이득값을 얻을 수 있었다. 잡음특성(NF : Noise Figure)은 High Gain모드에서 15dB이하, Low Gain 모드에서 3dB이하를 가진다.

We present the Low Power Broadband Low noise amplifier(LNA) that can be applied a whole bandwidth from 3G to 4G LTE. This multi input LNA was designed to steadily amplify through a multi input method regardless the size of the input signal and operate on a wide range of frequency band from a standard 3G CDMA band 1.2GHz to LTE band 2.5GHz. The designed LNA consumes an average of 6mA on a 1.2V power supply and this was affirmed using computer simulation tests. The amplification which was corresponded to the lowest input signal is at a maximum of 20dB and was able to obtain the minimum value of the gain of -10dB. The Noise figure is less than 3dB at a High-gain mode and is less than 15dB at a Low-gain mode.

키워드

참고문헌

  1. D Son, J. Kim, and C. Ryu, "Evolution of Next Generation Mobile Network Based on CDMA2000-1X Network," J. of the Korea Institute of Electronic Communication Sciences, vol. 1, no. 1, 2006, pp. 70-80.
  2. L. Hanzo, H. Haas, S. Imre, D. O'Brein, M. Rupp, and L. Gyongyosi, "Wireless Myths, Realities, and Futures : From 3G/4G to Optical and Quantum Wireless," Proc. of the IEEE, 2013, pp. 1853-1888.
  3. M. Go, S. Pyo, and H. Park, "Study on the Broadband RF Front-End Architecture," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 3, 2009, pp. 183-189.
  4. A. Abidi, P. Gray, and Meyer. R, Receivers. WILEY-IEEE PRESS EBOOK CHAPTERS, Integrated Circuits for Wireless Communications, 1999, pp. 155-319.
  5. C. P. Chang, J. H. Chen, and Y.-H. Wang, "A Fully integrated 5GHz low-voltage LNA using for ward body bias technology," IEEE Microwave and Wireless Components Letters, vol. 19, no. 3, 2009, pp. 176-178. https://doi.org/10.1109/LMWC.2009.2013745
  6. T. Lee, "The Design of CMOS Radio-Frequency Integrated Circuit," Cambrige, England, Cambrige University Press, 2004.
  7. U. Hong and C. Lee, "Signal Attenuation in Mobile Communication by Many Different Types of Obstacles," The Institute of Electronics and Information Engineers, vol. 29, no. 4, 1992, pp. 271-368.
  8. Y.-J. Shawn and S. H. Hsu, "A 3.1-10.6GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique," IEEE Microwave and Wireless Components Letters, vol. 17, 2007, pp. 232-234. https://doi.org/10.1109/LMWC.2006.890503
  9. S. B. T. Wang, A. M. Niknejad, "Design of a Sub-mW 960-MHz UWB CMOS LNA," IEEE Solid-state Circuit, vol. 41, 2007, pp. 2446-2456.
  10. A. Amer, E. Hegazi, and H. Ragai, "A lowpower wideband CMOS LNA for WiMAX," IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, 2007, pp. 4-8. https://doi.org/10.1109/TCSII.2006.884113
  11. T. K. Nguyen, S. Han, and D. Anh, "Ultra-low-power 2.4GHz image-rejection low-noise-amplifier," Electronics Letters, 2005, vol. 41, no. 15.
  12. Y. Jang and J. Choi, "Design of an Ultra Low Power CMOS 2.4GHz LNA," The Korean Intitute of Electromagnetic Engineering and Science, vol. 21, 2010, pp. 1045-1049. https://doi.org/10.5515/KJKIEES.2010.21.9.1045