DOI QR코드

DOI QR Code

Efficiency of LED Trap on Controlling Tobacco Whitefly, Bemisia tabaci Adults in Greenhouse

온실에 발생하는 담배가루이 성충에 대한 LED 트랩 방제효과

  • Jeon, Ju-Hyun (Department of Bioenvironmental Chemistry and Institute of Agricultural Science & Technology, College of Agriculture & Life Science, Chonbuk National University) ;
  • Lee, Sang-Guei (Crop Protection Division, Department of Crop Life Safety, National Academy of Agriculture Science) ;
  • Lee, Hoi-Seon (Department of Bioenvironmental Chemistry and Institute of Agricultural Science & Technology, College of Agriculture & Life Science, Chonbuk National University)
  • Received : 2014.02.19
  • Accepted : 2014.02.28
  • Published : 2014.09.30

Abstract

To evaluate light-emitting diode (LED) as potential attractants for Bemisia tabaci adults, attractiveness of white and yellow LED traps were investigated in greenhouse. The yellow LED trap showed the most attractive to B. tabaci adults, followed by a similarly attraction to the white LED trap, whereas the control (no light trap) was little attractive to B. tabaci adults. These results suggested that yellow and white LED traps could be used for environment-friendly insect pest control.

온실에 발생하는 담배가루이 성충에 대한 LED 트랩의 시설재배지내의 이용 가능성을 평가하기 위해 white LED (450-625 nm) 및 yellow LED (590 nm) 트랩과 광원이 장착되지 않은 트랩을 이용하여 유인활성을 비교하였다. 광원별 일일 포획 밀도 변화는 yellow LED 트랩에서 가장 높은 유인활성을 나타내었으며, white LED 트랩 또한 유사한 개체수가 포획되었다. 그러나 대조구로 사용된 광원이 설치되지 않은 트랩의 경우 광원이 설치된 트랩보다 적은 개체수가 포획되었다. 이러한 결과를 바탕으로 white LED 및 yellow LED 트랩이 시설재배지내에서의 친환경적 해충방제법으로의 가능성을 보여주었다.

Keywords

References

  1. Bedford ID, Briddon RW, Brown JK, Rosell RC, and Markham PG (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) biotypes from different geographic regions. Ann Appl Biol 125, 311-25. https://doi.org/10.1111/j.1744-7348.1994.tb04972.x
  2. Bishop AL, Worrall RJ, Spohr LJ, Mckenzie HJ, and Barchia IM (2004) Improving light-trap efficiency for Culicoides spp. with light-emitting diodes. Vet Ital 40, 266-9.
  3. Chu CC, Jackson CG, Alexander PJ, Karut K, and Henneberry TJ (2003) Plastic cup traps equipped with light-emitting diodes for monitoring adult Bemisia tabaci (Homoptera: Aleyrodidae). J Econ Entomol 96, 543-6. https://doi.org/10.1093/jee/96.3.543
  4. Devine GJ and Denholm I (1998) An unconventional use of piperonyl butoxide of managing the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Bull Entomol Res 88, 601-10. https://doi.org/10.1017/S0007485300054262
  5. Horowitz AR, Kontsedalov S, Khasdan V, and Ishaaya I (2005) Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxifen resistance. Arch Insect Biochem Physiol 58, 216-25. https://doi.org/10.1002/arch.20044
  6. Junji H, Makoto A, Tomoki N, Toshio M, Tetsuo Y, and Hiroki I (2002) Studies on the control of insect pests using illuminators made from ultrahigh luminance light-emitting diodes. Characteristics of insect electroretinagrams (EGR) with respect to wavelength and frequency of pulsed light stimuli. J Jpn Soc Agric Mach 64, 76-82.
  7. Kim MG and Lee HS (2012) Attraction effects of LED trap to Spodoptera exigua adults in the greenhouse. J Appl Biol Chem 55, 273-5. https://doi.org/10.3839/jabc.2012.043
  8. Kim MG, Yang JY, Chung NH, and Lee HS (2012) Photo-response of tobacco whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), to lightemitting diodes. J Korean Soc Appl Biol Chem 55, 567-9. https://doi.org/10.1007/s13765-012-2115-4
  9. Lee SW, Song MK, Ahn KS, Kim YJ, Moon YS, Koo HN et al. (2013) Insecticidal activity and behavioral disorders by pyrifluquinazon to Trialeurodes vaporariorum and Bemisia tabaci. Kor J Pestic Sci 17, 33-40. https://doi.org/10.7585/kjps.2013.17.1.33
  10. Navas-Castillo J, Camero R, Bueno M, and Moriones E (2000) Severe yellowing outbreaks in tomato in spain associated with infections of Tomato chlorosis virus. Plant Dis 84, 835-7. https://doi.org/10.1094/PDIS.2000.84.8.835
  11. Oh MS and Lee HS (2011) Development of phototactic test apparatus equipped with light source for monitoring pests. J Appl Biol Chem 53, 248-52.
  12. Park JA, Seok J, Parasad SV, and Kim Y (2011) Sound stress alters physiological processes in digestion and immunity and enhances insecticide susceptibility of Spodoptera exigua. Kor J Appl Entomol 50, 39-46. https://doi.org/10.5656/KSAE.2011.02.0.002
  13. Tamulaitis G, Duchovskis P, Bliznika Z, Breive K, Ulinskaite R, Brazaityte A et al. (2005) High-power light-emitting diode based facility for plant cultivation. J Phys D: Appl Phys 38, 3182-7. https://doi.org/10.1088/0022-3727/38/17/S20
  14. Yang JY, Cho KS, Chung NH, Kim CH, Suh JW, and Lee HS (2013) Constituents of volatile compounds derived from Melaleuca alternifolia leaf oil and acaricidal toxicities against house dust mites. J Korean Soc Appl Biol Chem 56, 91-4. https://doi.org/10.1007/s13765-012-2195-1
  15. Yang YC, Lee SG, Lee HK, Lee SH, and Lee HS (2002) A piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aepypti mosquito larvae. J Agri Food Chem 50, 3765-7. https://doi.org/10.1021/jf011708f
  16. Yang YC, Lim MY, and Lee HS (2003) Emodin isolated from Cassia obtusifolia (Leguminosae) seed shows larvicidal activity against three mosquito species. J Agric Food Chem 51, 7629-31. https://doi.org/10.1021/jf034727t
  17. Yeh N and Chung JP (2009) High-brightness LEDs-energy efficient lighting sources and their potential in indoor cultivation. Renew Sust Energy Rev 13, 2175-80. https://doi.org/10.1016/j.rser.2009.01.027
  18. Zhang LP, Zhang YJ, Wu QJ, Xu BY, and Chu D (2005) Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. J Appl Entomol 129, 121-8. https://doi.org/10.1111/j.1439-0418.2005.00950.x

Cited by

  1. in granary vol.59, pp.2, 2016, https://doi.org/10.3839/jabc.2016.023
  2. 토마토 온실에서 담배가루이 성충에 대한 노란색 및 백색 트랩의 방제효과 vol.26, pp.4, 2014, https://doi.org/10.12791/ksbec.2017.26.4.432