DOI QR코드

DOI QR Code

NiFeOx co-catalyzed BiVO4 photoanode for improved photoelectrochemical water splitting

  • Kim, Jin Hyun (Pohang University of Science and Technology (POSTECH)) ;
  • Kang, Hyun Joon (Pohang University of Science and Technology (POSTECH)) ;
  • Magesh, Ganesan (Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Jae Sung (Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2014.06.01
  • Accepted : 2014.06.10
  • Published : 2014.06.01

Abstract

PEC (photoelectrochemical) water splitting for $O_2/H_2$ production is one of the promising but difficult way to utilize solar energy. Among photocatalytic materials for PEC water oxidation, $BiVO_4$ (Eg = 2.4 eV) has been recently intensively studied since it has various advantageous properties. But its maximum efficiency has not been realized owing to kinetic factors - slow water oxidation at surface & insufficient stability. These problems can be simultaneously solved by application of oxygen evolution catalyst (OEC) such as $CoO_x$, Co-Pi, $IrO_x$ etc. Herein we report the first successful application of $NiFeO_x$ OEC on $BiVO_4$, showing good performance compared to other effective OEC applied on $BiVO_4$ under basic conditions. The enhanced activity of OEC loaded $BiVO_4$ has been supported by the surface charge separation efficiency and electrochemical impedance studies.

Keywords

References

  1. J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee and J. S. Lee, Journal of Catalysis, 2014, 317, 126-134. https://doi.org/10.1016/j.jcat.2014.06.015
  2. A. Fujishima and K. Honda, Nature, 1972, 238, 1. https://doi.org/10.1038/238001a0
  3. D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370-18377. https://doi.org/10.1021/ja207348x
  4. G. Magesh, E. S. Kim, H. J. Kang, M. Banu, J. Y. Kim, J. H. Kim and J. S. Lee, J. Mater. Chem. A, 2014, 2, 2044-2049. https://doi.org/10.1039/c3ta14408a
  5. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253-278. https://doi.org/10.1039/b800489g
  6. M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis and J. M. Spurgeon, J. Phys. Chem. Lett., 2013, 4, 4188-4191. https://doi.org/10.1021/jz4022415
  7. T. W. Kim and K.-S. Choi, Science, 2014, 343, 990-994. https://doi.org/10.1126/science.1246913
  8. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014.
  9. L. Trotochaud, T. J. Mills and S. W. Boettcher, J. Phys. Chem. Lett., 2013, 4, 931-935. https://doi.org/10.1021/jz4002604
  10. S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, Energy Environ. Sci., 2011, 4, 5028-5034. https://doi.org/10.1039/c1ee02444b
  11. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe and H. Sugihara, J. Phys. Chem. B, 2006, 110, 11352-11360. https://doi.org/10.1021/jp057539+
  12. G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han and C. Li, Angew. Chem. Int., 2014, 53, 7295-7299. https://doi.org/10.1002/anie.201404697
  13. M. Dinca, Y. Surendranath and D. G. Nocera, PNAS, 2010, 107, 10337-10341.
  14. D. K. Zhong and D. R. Gamelin, J. Am. Chem. Soc., 2010, 132, 4202-4207. https://doi.org/10.1021/ja908730h
  15. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, Energy Environ. Sci., 2011, 4, 4046-4051. https://doi.org/10.1039/c1ee01812d

Cited by

  1. Enhanced Photoelectrochemical Performance of Hydrogen Treated Hematite Thin Films Decorated with a Thin Akaganéite (β-FeOOH) Layer vol.2, pp.4, 2017, https://doi.org/10.1002/slct.201601356