Communication

$NiFeO_x$ co-catalyzed $BiVO_4$ photoanode for improved photoelectrochemical water splitting

Jin Hyun Kim^a, Hyun Joon Kang^a, Ganesan Magesh^b and Jae Sung Lee^b*

^aPohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea ^bUlsan National Institute of Science and Technology (UNIST), Ulsan, 689-798 Republic of Korea

ABSTRACT: PEC (photoelectrochemical) water splitting for O_2/H_2 production is one of the promising but difficult way to utilize solar energy. Among photocatalytic materials for PEC water oxidation, BiVO₄ (Eg = 2.4 eV) has been recently intensively studied since it has various advantageous properties. But its maximum efficiency has not been realized owing to kinetic factors – slow water oxidation at surface & insufficient stability. These problems can be simultaneously solved by application of oxygen evolution catalyst (OEC) such as CoO_x, Co-Pi, IrO_x etc. Herein we report the first successful application of NiFeO_x OEC on BiVO₄, showing good performance compared to other effective OEC applied on BiVO₄ under basic conditions. The enhanced activity of OEC loaded BiVO₄ has been supported by the surface charge separation efficiency and electrochemical impedance studies.

Solar energy utilization has been considered as the ideal way to cope with the energy and environmental crisis¹⁻³. Among technologies for this, PEC (photoelectrochemical) water splitting and CO₂ reduction has been studied as one of the interesting but challenging technologies to realize because of many reasons. Owing to its ability to produce chemical fuel (H₂, CH₄, CO, etc.,) directly instead of electricity using solar energy, PEC cell can function very similar with plants and its process is also called as artificial photosynthesis⁴.

The photoelectrochemical water splitting involves the following reactions, equations (1)- $(3)^{5}$.

$4H^+ + 4e_{cb} \rightarrow 2H_2$: Water reduction	(1)
$2H_2O + 4h_{vb}^+ \rightarrow O_2 + 4H^+$: Water oxidation	(2)
Overall reaction: $2H_2O \rightarrow 2H_2 + O_2$, $\Delta G^{\circ} = 238 \text{ kJ mol}^{-1}$	(3)

The performance of the PEC system depends on the individual components used for the system. Photoelectrochemical water oxidation is an important part in the realization of the artificial photosynthesis. Herein, we studied photoanode – electrocatalyst counter electrode system for water oxidation reaction.

BiVO₄ (Bismuth vanadate) is n-type semiconductor, having modest 2.4 eV direct energy band gap and is stable in neutral and basic pH ^{1, 6}. BiVO₄ has been recently intensively studied as photoanode material, and shows one of the highest PEC performance known for photoanode. But just like most of photoanode materials, BiVO₄ also suffers two major drawbacks – poor water oxidation kinetics and low surface

*To whom correspondence should be addressed. E-mail: jlee1234@unist.ac.kr charge separation. Along with that, stability is also issue for long term application. Poor surface charge separation can be mitigated by surface modifications and application of OEC (water oxidation catalyst) is one of the most common and effective way to promote water oxidation kinetics and stability. Since the discovery of the functionality of Co-Pi to improve surface charge separation, many species of OEC (Ag⁺ treatment, Pt, CoO_x, IrO_x, RhO_x, NiO_x, RuO_x, MnO_x, PdO_x, FeOOH, NiOOH, Co-Pi, Co-Bi, Ni-Bi etc) have been found to show good water oxidation catalytic performance^{1,7,8} For the first time, we report NiFeO_x as an efficient electrocatalyst for BiVO₄, which outperformed CoO_x and NiO_x. NiFeO_x, CoFeO_x, NiCeO_x are known to have very good OEC property and have low onset and good stability in Since BiVO₄ has modest stability in basic basic pH condition, these OECs are good candidates for BiVO₄.

BiVO₄ photoanode was prepared by a metal organic decomposition (MOD) method we reported previously^{1, 3, 10, 11}. Deposition of CoO_x , NiO_x and NiFeO_x co-catalysts were made by spin coating the precursor solution on the BiVO₄ film. Experimental details are described in supplementary information.

Figure 1. a) I-V curve of BiVO₄ and surface modified BiVO₄, b) I-V curve of BiVO₄ in 0.5 ml H₂O₂ + 100 ml 1 M NaOH, c) surface charge separation efficiency for BiVO₄ and surface modified BiVO₄, d) photocurrent at constant potential (1.03 V_{RHE}) of BiVO₄ and surface modified BiVO₄. (Measurement condition: 1 sun, 1M NaOH, 20 mV/sec, back illumination)

Figure 1 shows I-V curve of BiVO₄ with surface modifications. Bare BiVO₄ showed 0.15 mA/cm² while CoO_x (0.33 mA/cm²), NiO_x (0.29 mA/cm²) and NiFeO_x (0.6 mA/cm²)/BiVO₄ showed much greater photocurrent at 1.23 V_{RHE}. Calculation of η_{surf} (surface charge separation efficiency) using photocurrent comparison of water oxidation and H₂O₂ oxidation showed that PEC performance agrees with surface charge separation efficiency (Figure 1b & c). NiFeO_x showed 60% of efficiency at 1.23 V_{RHE} while bare BiVO₄ showed only 25%. This is modest efficiency for metal oxide but not better than other OEC with metal-ligand (ex: Co-Pi, FeOOH, near 100% of η_{surf})^{3, 7}. Calculation of η_{surf} was made according to the equation (4). Detailed description of the surface charge separation efficiency (η_{surf}) can be found in earlier report or elsewhere^{1, 3, 7}.

$$\eta_{\text{surf}} = J_{\text{PEC}} / J_{\text{H2O2}} \tag{4}$$

Recent report of ferrihydrite/Ta₃N₅ showed that capacitive behavior of surface modification and electrocatalyst might be the key factor to improve performance of photoanode. Capacitance indicates charging via hole intake which is necessary for later discharging via hole transfer to water (hole through going semiconductor||electrocatalyst||electrolyte interface)¹². Figure 1d shows photocurrent at constant potential where the photocurrent reached a peak upon light illumination, which later decreased rapidly and stabilized. The photocurrent turned cathodic when the irradiation was stopped and then slowly reached zero. This suggests that the surface is charged with holes during illumination and passed backward when illumination stopped. The released charge was calculated from the negative current and the values are BiVO₄ (0.339 mC), CoO_x/BiVO₄ (1.21 mC), NiO_x/BiVO₄ (2.80 mC) and NiFeO_x/BiVO₄ (1.983 mC). All electrocatalyst loaded BiVO4 showed larger capacitive behavior than bare BiVO₄ suggesting that electrocatalyts have hole charging ability before hole transfer through water. But the amount of charging is not proportional to PEC performance since capacitance of NiFeO_x is not the highest. This indicates that hole charging property is necessary for hole/electron separation at semiconductor||electrocatalyst interface but discharging property is also important at electrocatalyst||electrolyte interface. Indeed, from other results related to Co-Pi loaded on BiVO₄ and Fe₂O₃, Co-Pi had charging and discharging property but it did not show large capacitive behavior at constant potential mode. This means Co-Pi can be charged but also discharged fast enough to leave minor amount of residual holes during their transfer, and hence doesn't undergo severe kinetic bottleneck^{13, 14}

Figure 2. a) Diffuse reflectance UV-vis absorbance, b) XRD patterns (\bullet - peaks of BiVO₄) and SEM images of c) bare BiVO₄ and d) NiFeO_x/BiVO₄. Inset at a) is picture of BiVO₄ and NiFeO_x/BiVO₄.

UV-vis absorbance spectrum showed typical light absorption of BiVO₄ with threshold of ~520 nm (Figure 2a). Modification with NiFeO_x showed little difference in absorption as loading amount was rather small. XRD patterns (Figure 2b) also showed pure monoclinic BiVO₄ phase but no obvious signal of NiFeO_x. Similar phenomena is observed in our earlier reports and various other works as loaded electrocatalyst is often amorphous and the quantity is very small ^{1, 10, 15}. SEM image (Figure 2c) showed typical morphology of bare BiVO₄. Deposition of NiFeO_x (Figure 2d) showed small agglomerated particles covering the entire surface of BiVO₄, suggesting that some small amount of Ni+Fe oxide is loaded. Exact composition is not yet known but it is in progress using XPS and other methods.

To further identify effect of electrocatalysts, EIS (Electrochemical impedance spectroscopy) was used. For fitting, simple Randles equivalent circuit model was introduced containing R_s for electrolyte resistance, R_{CT} is resistance at electrolyte||semiconductor interface, and CPE as capacitance of photoanode (Figure 3 inset). EIS results (Figure 3) showed a R_{CT} of 7601 Ω , 2220 Ω , 3360 Ω and 991 Ω for BiVO₄, CoO_x/BiVO₄, NiO_x/BiVO₄ and NiFeO_x/BiVO₄ respectively. These results show that R_{CT} decreased upon loading the electrocatalysts and the lower the R_{CT} the higher the photocurrent, with NiFeO_x/BiVO₄ showing the lowest R_{CT} and the highest photocurrent. This shows that the surface charge transfer was boosted by the electrocatalysts.

Figure 3. EIS (symbols: measured, line: fitted) of BiVO₄ and surface modified BiVO₄. Inset is equivalent circuit used for fitting. (Measurement condition: 1 sun, 1 M NaOH, 20 mV/sec, back illumination, $1.23 V_{RHE}$)

In summary, we applied $NiFeO_x$ OEC on $BiVO_4$ and observed improved PEC performance for water oxidation.

Characterization indicates that $NiFeO_x$ suppresses surface recombination and improves surface charges transfer resistance. Capacitance behavior was increased by introduction of electrocatalysts, but not necessarily had proportional relationship. This report shows that $NiFeO_x$ is good choice as OEC for photoanodes under basic conditions.

KEYWORDS: OEC, BiVO₄, PEC

Received June 1, 2014; Accepted June 10, 2014

ACKNOWLEDGEMENT

This work was supported by grants from the BK+ Program (10Z20130011057) and Basic Science Research Program (No. 2012-017247) and the Korea Center for Artificial Photosynthesis (KCAP) funded by the National Research Foundation of Korea (No. 2012M1A2A2671779).

REFERENCES AND NOTES

- J. H. Kim, J. W. Jang, H. J. Kang, G. Magesh, J. Y. Kim, J. H. Kim, J. Lee and J. S. Lee, *Journal of Catalysis*, 2014, 317, 126-134.
- 2. A. Fujishima and K. Honda, Nature, 1972, 238, 1.
- D. K. Zhong, S. Choi and D. R. Gamelin, J. Am. Chem. Soc., 2011, 133, 18370-18377.
- G. Magesh, E. S. Kim, H. J. Kang, M. Banu, J. Y. Kim, J. H. Kim and J. S. Lee, *J. Mater. Chem. A*, 2014, 2, 2044-2049.

- 5. A. Kudo and Y. Miseki, *Chem. Soc. Rev.*, 2009, **38**, 253-278.
- M. F. Lichterman, M. R. Shaner, S. G. Handler, B. S. Brunschwig, H. B. Gray, N. S. Lewis and J. M. Spurgeon, *J. Phys. Chem. Lett.*, 2013, 4, 4188-4191.
- 7. T. W. Kim and K.-S. Choi, Science, 2014, 343, 990-994.
- 8. T. Hisatomi, J. Kubota and K. Domen, Chem. Soc. Rev., 2014.
- 9. L. Trotochaud, T. J. Mills and S. W. Boettcher, *J. Phys. Chem. Lett.*, 2013, 4, 931-935.
- S. K. Pilli, T. E. Furtak, L. D. Brown, T. G. Deutsch, J. A. Turner and A. M. Herring, *Energy Environ. Sci.*, 2011, 4, 5028-5034.
- 11. K. Sayama, A. Nomura, T. Arai, T. Sugita, R. Abe, M. Yanagida, T. Oi, Y. Iwasaki, Y. Abe and H. Sugihara, J. Phys. Chem. B, 2006, 110, 11352-11360.
- 12. G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han and C. Li, *Angew. Chem. Int.*, 2014, **53**, 7295-7299.
- 13. M. Dincă, Y. Surendranath and D. G. Nocera, *PNAS*, 2010, **107**, 10337-10341.
- 14.D. K. Zhong and D. R. Gamelin, J. Am. Chem. Soc., 2010, 132, 4202-4207.
- 15. W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu and Z. Zou, *Energy Environ. Sci.*, 2011, 4, 4046-4051.