References
- Chen X, Sowarby R. The development of ideal blank shapes by the method of plane stress characteristics. International Journal of Mechanical Sciences. 1992; 34(2): 159-166. https://doi.org/10.1016/0020-7403(92)90080-Z
- Kuwabara T, Si W. PC-based blank design system for deepdrawing irregularly shaped prismatic shells with arbitrarily shape flange. Journal of Materials Processing Technology. 1997; 63(1): 89-94. https://doi.org/10.1016/S0924-0136(96)02605-2
- Kim S, Park M, Kim S, Seo D. Blank design and formability for non-circular deep drawing processes by the finite-element method. Journal of Materials Processing Technology. 1998; 75(1): 94-99. https://doi.org/10.1016/S0924-0136(97)00297-5
- Lee CH, Huh H. Blank design and strain estimates for sheet metal forming processes by a finite element inverse approach with initial guess of linear deformation. Journal of Materials Processing Technology. 1998; 82(1): 145-155. https://doi.org/10.1016/S0924-0136(98)00034-X
- Kleinermann JP, Ponthot JP. Parameter identification and shape/process optimization in metal forming simulation. Journal of Materials Processing Technology. 2003; 139(1): 521-526. https://doi.org/10.1016/S0924-0136(03)00530-2
- Jansson T, Andersson A, Nilsson L. Optimization of draw-in for an automotive sheet metal part: an evaluation using surrogate models and response surfaces. Journal of Materials Processing Technology. 2005; 159(3): 426-434. https://doi.org/10.1016/j.jmatprotec.2004.06.011
- Liu W, Yang Y. Multi-objective optimization of sheet metal forming process using Pareto-based genetic algorithm. Journal of Materials Processing Technology. 2008; 208(1): 499-506. https://doi.org/10.1016/j.jmatprotec.2008.01.014
- Hamdaoui M, Le Quilliec G, Breitkopf P, Villon P. POD surrogates for real-time multi-parametric sheet metal forming problems. International Journal of Material Forming. 2013; 1-22. DOI: 10.1007/s12289-013-1132-0.
- Azaouzi M, Naceur H, Delameziere A, Batoz JL, Belouettar S. An heuristic optimization algorithm for the blank shape design of high precision metallic parts obtained by a particular stamping process. Finite Elements in Analysis and Design. 2008; 44(14): 842-850. https://doi.org/10.1016/j.finel.2008.06.008
- Lin BT, Kuo CC. Application of an integrated CAD/CAE/CAM system for stamping dies for automobiles. The International Journal of Advanced Manufacturing Technology. 2008; 35(9-10): 1000-1013. https://doi.org/10.1007/s00170-006-0785-y
- Kirkpatrick S, Vecchi MP. Optimization by simmulated annealing. Science. 1983; 220(4598): 671-680. https://doi.org/10.1126/science.220.4598.671
- Spall JC. Introduction to stochastic search and optimization: estimation, simulation, and control. Hoboken(NJ): John Wiley & Sons; 2005. 618 p.
- Das I, Dennis JE. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization. 1998; 8(3): 631-657. https://doi.org/10.1137/S1052623496307510
- Messac A, Ismail-Yahaya A, Mattson CA. The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization. 2003; 25(2): 86-98. https://doi.org/10.1007/s00158-002-0276-1
- Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation. 1999; 7(3): 205-230. https://doi.org/10.1162/evco.1999.7.3.205
- Achatz S. Higher order sparse grid methods for elliptic partial differential equations with variable coefficients. Computing. 2003; 71(1): 1-15. https://doi.org/10.1007/s00607-003-0012-8
- Balder R, Rude U, Schneider S, Zenger C. Sparse grid and extrapolation methods for parabolic problems. In: Proceedings of International Conference on Computational Methods in Water Resources, Heidelberg Kluwer Academic; 1994 Jul; Dordrecht, Netherlands; p. 1383-1392.
- Bungartz HJ, Dirnstorfer S. Multivariate quadrature on adaptive sparse grids. Computing. 2003; 71(1): 89-114. https://doi.org/10.1007/s00607-003-0016-4
- Bungartz H, Huber W. First experiments with turbulence simulation on workstation networks using sparse grid methods. Computational Fluid Dynamics on Parallel Systems. Vieweg+ Teubner Verlag. 1995; 50: 36-48.
- Garcke J, Griebel M. Classification with sparse grids using simplicial basis functions. Intelligent Data Analysis. 2002; 6(6): 483-502.
- Smolyak SA. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR. 1963; 4(240-243): 123.
- Klimke A, Wohlmuth B. Algorithm 847: Spinterp: piecewise multilinear hierarchical sparse grid interpolation in MATLAB. ACM Transactions on Mathematical Software (TOMS). 2005; 31(4): 561-579. https://doi.org/10.1145/1114268.1114275
- Klimke A. Sparse Grid Interpolation Toolbox-User's Guide. IANS report. 2007 Jan; 17 p.
- Marciniak Z, Duncan JL, Hu SJ. Mechanics of sheet metal forming. 2nd ed. Oxford (UK): Butterworth-Heinemann; 2002. Chapter 3, Deformation of sheet in plane stress; p. 30-44.
- Marsden JE, Wiggins S, Hughes TJR, Sirovich L. Computational Inelasticity. New York (NY): Springer-Verlag Inc.; 1998. 412 p.
- Spall JC. Implementation of the simultaneous perturbation algorithm for stochastic optimization. Aerospace and Electronic Systems, IEEE Transactions on. 1998; 34(3): 817-823. https://doi.org/10.1109/7.705889
- Cerny V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications. 1985; 45(1): 41-51. https://doi.org/10.1007/BF00940812
- Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. The Journal of Chemical Physics. 2004; 21(6): 1087-1092.
- Spall JC. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest. 1998; 19(4): 482-492.