References
- Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309.
- Blomquist, G.J., Borgeson, C.E., Vundla, M., 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 21, 99-106. https://doi.org/10.1016/0020-1790(91)90069-Q
- Bravo, A., Gill, S.S., Soberon, M., 2005. Bacillus thuringiensis mechanisms and use, in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 175-206.
- Bravo, A., Gomez, I., Porta, H., Garcia-Gomez, B.I., Rodriguez- Almazan, C., Pardo, L., Soberon, M., 2012. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6, 17-26.
- Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. https://doi.org/10.1186/1471-2180-10-129
-
Burke, J.E., Dennis, E.A., 2009. Phospholipase
$A_2$ structure/function, mechanism, and signaling. J. Lipid Res. 50, 5237-5242. - Christie, W.W., 2003. Lipid analysis, in: Christie, W.W. (Ed.), Isolation, separation, identification and structural analysis of lipids. The Oily Press, Bridgewater, UK, pp. 373-387.
- Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
- Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K, Sampson, K., Schnepf, E., Sun, M., Zeigler, D.R., 2014. 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
-
Cripps, C., Borgeson, C., Blomquist, G.J., de Renobales, M., 1990. The
$\Delta^{12}$ desatuase from the house cricket Acheta domesticus (Orthoptera: Gryllidae): Characterization and form of substrate. Arch. Biochem. Biophys. 278, 46-51. https://doi.org/10.1016/0003-9861(90)90229-R - Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M.H., Nielsen-LeRoux, C., Charles, J.F., Pauron, D., 2002. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proc. Natl. Acad. Sci. USA 99, 5830-5835. https://doi.org/10.1073/pnas.092615399
- Dubovskiy, I.M., Krukova, N.A., Glupov, V.V., 2008. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J. Invertebr. Pathol. 98, 360-362. https://doi.org/10.1016/j.jip.2008.03.011
- Eom, S., Park, Y., Kim, Y., 2014. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52, 161-168. https://doi.org/10.1007/s12275-014-3251-9
- ffrench-Constant, R.H., Waterfield, N., Daborn, P., 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 239-253.
- Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 226, 497-509.
- Gahan, L.J., Gould, F., Heckel, D.G., 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857-860. https://doi.org/10.1126/science.1060949
- Garbutt, J., Bonsall, M.B., Wright, D.J., Raymond, B., 2011. Antagonistic competition moderates virulence in Bacillus thuringiensis. Ecol. Lett. 14, 765-772. https://doi.org/10.1111/j.1461-0248.2011.01638.x
- Goh, H.G., Lee, S.G. Lee, B.P., Choi, G.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
- Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M.A., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46. https://doi.org/10.1016/j.jip.2014.04.003
- Hwang, J., Park, Y., Kim, Y., 2013. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83, 151-169. https://doi.org/10.1002/arch.21103
- Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
- Jurenka, R.A., de Renobales, M., Blomquist, G.J., 1987. De novo biosynthesis of polyunsaturated fatty acids in the cockroach, Periplaneta americana. Arch. Biochem. Biophys. 255, 184-193. https://doi.org/10.1016/0003-9861(87)90309-2
- Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., Blomquist, G.J., 1988. De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochim. Biophys. Acta 963, 21-27. https://doi.org/10.1016/0005-2760(88)90333-5
- Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
-
Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase
$A_2$ to induce host immunodepression. J. Invertebr. Physiol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001 - Kwon, S., Kim, Y., 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42, 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
- Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhurst, R., Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. https://doi.org/10.1016/j.ibmb.2005.02.011
- de Maagd, R.A., Bravo, A., Crickmore, N., 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
- Martinez-Ramirez, A.C., Gould, F., Ferre, J., 1999. Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci. Technol. 9, 239-246. https://doi.org/10.1080/09583159929811
- Metcalfe, L.D., Schmitz, A.A., 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-364. https://doi.org/10.1021/ac60171a016
- Oppert, B., Kramer, K.J., Johnson, D.E., Macintosh, S.C., Mcgaughey, W.H., 1994. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun. 198, 940-947. https://doi.org/10.1006/bbrc.1994.1134
- Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
-
Park, Y. and Kim, Y. 2003. Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive
$PLA_2$ of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54, 143-142. https://doi.org/10.1002/arch.10108 - Park, Y., Kim, Y., 2005. Inhibitory effect of an entomopathogenic bacterium, Xenorhabdus nematophila, on the release of arachidonic acid from the membrane preparation of Spodoptera exigua. J. Asia Pac. Entomol. 8, 61-67. https://doi.org/10.1016/S1226-8615(08)60072-2
- Park, Y., Kim, Y., 2013. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. J. Invertebr. Pathol. 114, 285-291. https://doi.org/10.1016/j.jip.2013.09.006
-
Park, Y., Kim, Y., Stanley, D., 2004a. The bacterium Xenorhabdus nematophila inhibits phospholipase
$A_2$ from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91, 371-373. -
Park, Y., Kim, Y., Tunaz, H., Stanley, D.W., 2004b. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase
$A_2$ ($PLA_2$ ) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86, 65-71. https://doi.org/10.1016/j.jip.2004.05.002 -
Radvanyi, F., Jordan, L., Russo-Marie, F., Bon, C., 1989. A sensitive and continuous fluorometric assay for phospholipase
$A_2$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177, 103-109. https://doi.org/10.1016/0003-2697(89)90022-5 - Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
- Richards, E.H., Dani, M.P., 2010. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis. J. Invertebr. Pathol. 104, 51-57. https://doi.org/10.1016/j.jip.2010.01.010
- Roh, J.Y., Choi, J.Y., Li, M.S., Jin, B.R., Je, Y.H., 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547-559.
-
Schaloske, R.H., Dennis, E.A., 2006. The phospholipase
$A_2$ superfamily and its group numbering system. Biochim. Biophys. Acta 61, 1246-1259. - SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
- Seo, S., Kim, Y., 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49, 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
-
Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase
$A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12 - Shrestha, S., Hong, Y., Kim, Y., 2010. Two chemical derivatives of metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13, 55-60. https://doi.org/10.1016/j.aspen.2009.11.005
-
Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase
$A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3 - Stanley, D., Kim, Y., 2014. Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
- Stanley-Samuelson, D.W., Dadd, R.H., 1981. Arachidonic acid and other tissue fatty acids of Culex pipiens reared with various concentrations of dietary arachidonic acid. J. Insect Physiol. 27, 571-578. https://doi.org/10.1016/0022-1910(81)90103-7
- Stanley-Samuelson, D.W., Dadd, R.H., 1983. Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochem. 13, 549-588. https://doi.org/10.1016/0020-1790(83)90014-8
-
Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J., Shimizu, T., 1997. Role of cytosolic phospholipase
$A_2$ in allergic response and parturition. Nature 390, 618-622. https://doi.org/10.1038/37622 - Zhang, X., Candas, M., Griko, N.B., Taussig, R., Bulla, L.A., Jr., 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103, 9897-9902. https://doi.org/10.1073/pnas.0604017103