DOI QR코드

DOI QR Code

Effect of Cellular Phospholipase A2 Inhibition on Enhancement of Bt Insecticidal Activity

세포성 인지질분해효소 활성 억제에 따른 비티 살충력 증가 효과

  • Eom, Seonghyeon (Department of Bioresource Sciences, Andong National University) ;
  • Park, Jiyeong (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kunwoo (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 엄성현 (안동대학교 자연과학대학 생명자원과학과) ;
  • 박지영 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김건우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2014.05.12
  • Accepted : 2014.08.18
  • Published : 2014.09.01

Abstract

Some bacterial metabolites of Xenorhabdus nematophila (Xn) inhibit phospholipase $A_2$ ($PLA_2$) activity to shutdown eicosanoid biosynthesis in target insects. However, little has been known about the target insect $PLA_2$ of these bacterial metabolites. Eight bacterial metabolites identified in Xn culture broth exhibited significant insecticidal activities against larvae of both lepidopteran species of Plutella xylostella and Spodoptera exigua. Moreover, these bacterial metabolites significantly enhanced insecticidal activities of Bacillus thuringiensis (Bt). To determine target $PLA_2$, we cloned and over-expressed cellular $PLA_2$ ($SecPLA_2$) of S. exigua. Purified $SecPLA_2$ catalyzed phospholipids derived from the fat body and released several polyunsaturated fatty acids. Most Xn metabolites significantly inhibited $SecPLA_2$ activity, but were different in their inhibitory activities. There was a positive correlation between the inhibition of $SecPLA_2$ and the enhancement of Bt insecticidal activity. These results indicate that $SecPLA_2$ is a molecular target inhibited by Xn metabolite.

곤충병원성세균 Xenorhabdus nematophila (Xn)의 일부 대사물질은 대상 곤충의 phospholipase $A_2$ ($PLA_2$)를 억제하여 아이코사노이드 생합성 활성을 저해시킨다. 그러나 이들 세균 대사물질이 억제하는 곤충의 $PLA_2$에 대해서는 알려져 있지 않다. Xn의 배양액에서 화학구조가 동정된 8 가지 대사물질들은 두 종의 나비목 배추좀나방(Plutella xylostella)과 파밤나방(Spodoptera exigua)의 유충에 대하여 살충 활성을 보유했다. 특별히 이들 물질은 모두 Bacillus thuringiensis (비티)의 살충력을 크게 향상시켰다. 파밤나방의 세포성 인지질 분해효소($SecPLA_2$)를 클로닝하고 대장균에서 과발현시켰다. 분리된 $SecPLA_2$를 지방체에서 얻은 인지질과 반응시켰을 때 여러 다가불포화지방산을 해리시켰다. 이 효소활성이 Xn 유래 대사물질들에 의해 뚜렷이 억제되었다. 또한 $SecPLA_2$에 대한 억제효과와 비티 살충력 상승효과 사이에 정의 상관관계를 보였다. 본 연구는 $SecPLA_2$가 Xn 대사물질의 억제 대상 분자 종말점 가운데 하나라고 제시하고 있다.

Keywords

References

  1. Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309.
  2. Blomquist, G.J., Borgeson, C.E., Vundla, M., 1991. Polyunsaturated fatty acids and eicosanoids in insects. Insect Biochem. 21, 99-106. https://doi.org/10.1016/0020-1790(91)90069-Q
  3. Bravo, A., Gill, S.S., Soberon, M., 2005. Bacillus thuringiensis mechanisms and use, in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 175-206.
  4. Bravo, A., Gomez, I., Porta, H., Garcia-Gomez, B.I., Rodriguez- Almazan, C., Pardo, L., Soberon, M., 2012. Evolution of Bacillus thuringiensis Cry toxins insecticidal activity. Microbial Biotechnol. 6, 17-26.
  5. Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  6. Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
  7. Broderick, N.A., Raffa, K.F., Handelsman, J., 2010. Chemical modulators of the innate immune response alter gypsi moth larval susceptibility to Bacillus thuringiensis. BMC Microbiol. 10, 129. https://doi.org/10.1186/1471-2180-10-129
  8. Burke, J.E., Dennis, E.A., 2009. Phospholipase $A_2$ structure/function, mechanism, and signaling. J. Lipid Res. 50, 5237-5242.
  9. Christie, W.W., 2003. Lipid analysis, in: Christie, W.W. (Ed.), Isolation, separation, identification and structural analysis of lipids. The Oily Press, Bridgewater, UK, pp. 373-387.
  10. Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
  11. Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K, Sampson, K., Schnepf, E., Sun, M., Zeigler, D.R., 2014. 'Bacillus thuringiensis toxin nomenclature'. http://www.btnomenclature.info.
  12. Cripps, C., Borgeson, C., Blomquist, G.J., de Renobales, M., 1990. The $\Delta^{12}$ desatuase from the house cricket Acheta domesticus (Orthoptera: Gryllidae): Characterization and form of substrate. Arch. Biochem. Biophys. 278, 46-51. https://doi.org/10.1016/0003-9861(90)90229-R
  13. Darboux, I., Pauchet, Y., Castella, C., Silva-Filha, M.H., Nielsen-LeRoux, C., Charles, J.F., Pauron, D., 2002. Loss of the membrane anchor of the target receptor is a mechanism of bioinsecticide resistance. Proc. Natl. Acad. Sci. USA 99, 5830-5835. https://doi.org/10.1073/pnas.092615399
  14. Dubovskiy, I.M., Krukova, N.A., Glupov, V.V., 2008. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. J. Invertebr. Pathol. 98, 360-362. https://doi.org/10.1016/j.jip.2008.03.011
  15. Eom, S., Park, Y., Kim, Y., 2014. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 52, 161-168. https://doi.org/10.1007/s12275-014-3251-9
  16. ffrench-Constant, R.H., Waterfield, N., Daborn, P., 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. in: Gilbert, L.I., Iatrou, K., Gill, S.S., (Eds.), Comprehensive molecular insect science. Elsevier, New York, pp. 239-253.
  17. Folch, J., Lees, M., Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipid from animal tissue. J. Biol. Chem., 226, 497-509.
  18. Gahan, L.J., Gould, F., Heckel, D.G., 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293, 857-860. https://doi.org/10.1126/science.1060949
  19. Garbutt, J., Bonsall, M.B., Wright, D.J., Raymond, B., 2011. Antagonistic competition moderates virulence in Bacillus thuringiensis. Ecol. Lett. 14, 765-772. https://doi.org/10.1111/j.1461-0248.2011.01638.x
  20. Goh, H.G., Lee, S.G. Lee, B.P., Choi, G.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
  21. Grizanova, E.V., Dubovskiy, I.M., Whitten, M.M.A., Glupov, V.V., 2014. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J. Invertebr. Pathol. 119, 40-46. https://doi.org/10.1016/j.jip.2014.04.003
  22. Hwang, J., Park, Y., Kim, Y., 2013. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and IMD pathways by blocking eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83, 151-169. https://doi.org/10.1002/arch.21103
  23. Jung, S., Kim, Y., 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35, 1584-1589. https://doi.org/10.1603/0046-225X(2006)35[1584:SEOEBX]2.0.CO;2
  24. Jurenka, R.A., de Renobales, M., Blomquist, G.J., 1987. De novo biosynthesis of polyunsaturated fatty acids in the cockroach, Periplaneta americana. Arch. Biochem. Biophys. 255, 184-193. https://doi.org/10.1016/0003-9861(87)90309-2
  25. Jurenka, R.A., Stanley-Samuelson, D.W., Loher, W., Blomquist, G.J., 1988. De novo biosynthesis of arachidonic acid and 5,11,14-eicosatrienoic acid in the cricket Teleogryllus commodus. Biochim. Biophys. Acta 963, 21-27. https://doi.org/10.1016/0005-2760(88)90333-5
  26. Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  27. Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_2$ to induce host immunodepression. J. Invertebr. Physiol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001
  28. Kwon, S., Kim, Y., 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control 42, 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
  29. Ma, G., Roberts, H., Sarjan, M., Featherstone, N., Lahnstein, J., Akhurst, R., Schmidt, O., 2005. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae? Insect Biochem. Mol. Biol. 35, 729-739. https://doi.org/10.1016/j.ibmb.2005.02.011
  30. de Maagd, R.A., Bravo, A., Crickmore, N., 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17, 193-199. https://doi.org/10.1016/S0168-9525(01)02237-5
  31. Martinez-Ramirez, A.C., Gould, F., Ferre, J., 1999. Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera: Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci. Technol. 9, 239-246. https://doi.org/10.1080/09583159929811
  32. Metcalfe, L.D., Schmitz, A.A., 1961. The rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 33, 363-364. https://doi.org/10.1021/ac60171a016
  33. Oppert, B., Kramer, K.J., Johnson, D.E., Macintosh, S.C., Mcgaughey, W.H., 1994. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella. Biochem. Biophys. Res. Commun. 198, 940-947. https://doi.org/10.1006/bbrc.1994.1134
  34. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  35. Park, Y. and Kim, Y. 2003. Xenorhabdus nematophilus inhibits p-bromophenacyl bromide (BPB)-sensitive $PLA_2$ of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54, 143-142. https://doi.org/10.1002/arch.10108
  36. Park, Y., Kim, Y., 2005. Inhibitory effect of an entomopathogenic bacterium, Xenorhabdus nematophila, on the release of arachidonic acid from the membrane preparation of Spodoptera exigua. J. Asia Pac. Entomol. 8, 61-67. https://doi.org/10.1016/S1226-8615(08)60072-2
  37. Park, Y., Kim, Y., 2013. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target. J. Invertebr. Pathol. 114, 285-291. https://doi.org/10.1016/j.jip.2013.09.006
  38. Park, Y., Kim, Y., Stanley, D., 2004a. The bacterium Xenorhabdus nematophila inhibits phospholipase $A_2$ from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91, 371-373.
  39. Park, Y., Kim, Y., Tunaz, H., Stanley, D.W., 2004b. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase $A_2$ ($PLA_2$) in tobacco hornworm, Manduca sexta. J. Invertebr. Pathol. 86, 65-71. https://doi.org/10.1016/j.jip.2004.05.002
  40. Radvanyi, F., Jordan, L., Russo-Marie, F., Bon, C., 1989. A sensitive and continuous fluorometric assay for phospholipase $A_2$ using pyrene-labeled phospholipids in the presence of serum albumin. Anal. Biochem. 177, 103-109. https://doi.org/10.1016/0003-2697(89)90022-5
  41. Rahman, M.M., Roberts, H.L.S., Sarjan, M., Asgari, S., Schmidt, O., 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101, 2696-2699. https://doi.org/10.1073/pnas.0306669101
  42. Richards, E.H., Dani, M.P., 2010. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis. J. Invertebr. Pathol. 104, 51-57. https://doi.org/10.1016/j.jip.2010.01.010
  43. Roh, J.Y., Choi, J.Y., Li, M.S., Jin, B.R., Je, Y.H., 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17, 547-559.
  44. Schaloske, R.H., Dennis, E.A., 2006. The phospholipase $A_2$ superfamily and its group numbering system. Biochim. Biophys. Acta 61, 1246-1259.
  45. SAS Institute, Inc. 1989. SAS/STAT user's guide, release 6.03, Ed. Cary, N.C.
  46. Seo, S., Kim, Y., 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Kor. J. Appl. Entomol. 49, 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  47. Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Entomol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
  48. Shrestha, S., Hong, Y., Kim, Y., 2010. Two chemical derivatives of metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13, 55-60. https://doi.org/10.1016/j.aspen.2009.11.005
  49. Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase $A_2$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3
  50. Stanley, D., Kim, Y., 2014. Eicosanoid signaling in insects; from discovery to plant protection. Crit. Rev. Plant Sci. 33, 20-63. https://doi.org/10.1080/07352689.2014.847631
  51. Stanley-Samuelson, D.W., Dadd, R.H., 1981. Arachidonic acid and other tissue fatty acids of Culex pipiens reared with various concentrations of dietary arachidonic acid. J. Insect Physiol. 27, 571-578. https://doi.org/10.1016/0022-1910(81)90103-7
  52. Stanley-Samuelson, D.W., Dadd, R.H., 1983. Long-chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochem. 13, 549-588. https://doi.org/10.1016/0020-1790(83)90014-8
  53. Uozumi, N., Kume, K., Nagase, T., Nakatani, N., Ishii, S., Tashiro, F., Komagata, Y., Maki, K., Ikuta, K., Ouchi, Y., Miyazaki, J., Shimizu, T., 1997. Role of cytosolic phospholipase $A_2$ in allergic response and parturition. Nature 390, 618-622. https://doi.org/10.1038/37622
  54. Zhang, X., Candas, M., Griko, N.B., Taussig, R., Bulla, L.A., Jr., 2006. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 103, 9897-9902. https://doi.org/10.1073/pnas.0604017103