DOI QR코드

DOI QR Code

Development of a One-Step PCR Assay with Nine Primer Pairs for the Detection of Five Diarrheagenic Escherichia coli Types

  • Oh, Kyung-Hwan (Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health) ;
  • Kim, Soo-Bok (Kogene Biotech Co., Ltd.) ;
  • Park, Mi-Sun (Kogene Biotech Co., Ltd.) ;
  • Cho, Seung-Hak (Division of Enteric Diseases, Center for Infectious Diseases, Korea National Institute of Health)
  • Received : 2013.12.12
  • Accepted : 2014.03.13
  • Published : 2014.06.28

Abstract

Certain Escherichia coli (E. coli) strains have the ability to cause diarrheal disease. Five types of diarrheagenic E. coli have been identified, including EHEC, ETEC, EPEC, EAEC, and EIEC. To detect these five diarrheagenic types rapidly, we developed a one-step multiplex PCR (MP-PCR) assay using nine primer pairs to amplify nine virulence genes specific to the different virotypes, with each group being represented (i.e., stx1 and stx2 for EHEC, lt, sth, and stp for ETEC, eaeA and bfpA for EPEC, aggR for EAEC, and ipaH for EIEC). The PCR primers were constructed using MultAlin. The sensitivity and specificity of the constructed multiplex PCR primers were measured using DNA isolated from diarrheagenic E. coli strains representing each group. The limits of detection were as follows: $5{\times}10^1CFU/ml$ for EHEC, $5{\times}10^3CFU/ml$ for ETEC expressing lt and sth, $5{\times}10^4CFU/ml$ for ETEC expressing stp, $5{\times}10^2CFU/ml$ for EPEC, $5{\times}10^4CFU/ml$ for EAEC, and $5{\times}10^2CFU/ml$ for EIEC. To confirm the specificity, C. jejuni, C. perfringens, S. Typhimurium, V. parahaemolyticus, L. monocytogenes, Y. enterocolitica, B. cereus, and S. aureus were used as negative controls, and no amplification was obtained for these. Moreover, this kit was validated using 100 fecal samples from patients with diarrhea and 150 diarrheagenic E. coli strains isolated in Korea. In conclusion, the multiplex PCR assay developed in this study is very useful for the rapid and specific detection of five diarrheagenic E. coli types. This single-step assay will be useful as a rapid and economical method, as it reduces the cost and time required for the identification of diarrheagenic E. coli.

Keywords

References

  1. Bernier C, Gounon P, Le Bouguenec C. 2002. Identification of an aggregative adhesion fimbria (AAF) type III-encoding operon in enteroaggregative Escherichia coli as a sensitive probe for detecting the AAF-encoding operon family. Infect. Immun. 70: 4302-4311. https://doi.org/10.1128/IAI.70.8.4302-4311.2002
  2. Botteldoorn N, Heyndrickx M, Rijpens N, Herman L. 2003. Detection and characterization of verotoxigenic Escherichia coli by VTEC/EHEC multiplex PCR in porcine faeces and pig carcass swabs. Res. Microbiol. 154: 97-104. https://doi.org/10.1016/S0923-2508(03)00028-7
  3. Clarke SC. 2001. Diarrhoeagenic Escherichia coli: an emerging problem? Diagn. Microbiol. Infect. Dis. 41: 93-99. https://doi.org/10.1016/S0732-8893(01)00303-0
  4. Corpet F. 1988. Multiple sequence alignment with hierarchical clustering. Nucl. Acids Res. 16: 10881-10890. https://doi.org/10.1093/nar/16.22.10881
  5. Fujuoka M, Saito M, Otomo Y. 2008. Direct detection of diarrheagenic Escherichia coli in patient stool specimens by developed multiplex PCRs for the establishment of surveillance system of diarrheagenic Escherichia coli. Jpn. J. Med. Technol. 8: 1041-1046.
  6. Fujioka M, Otomo Y, Ahsan CR. 2013. A novel single-step multiplex polymerase chain reaction assay for the detection of diarrheagenic Escherichia coli. J. Microbiol. Methods 92: 289-292. https://doi.org/10.1016/j.mimet.2012.12.010
  7. Gomez-Duarte OG, Bai J, Newel E. 2009. Detection of E. coli, Salmonella spp., Shigella spp., Yersinia entercolitica, Vibrio cholerae, and Campylobacter spp. enteropathogens by threereaction multplex PCR. Diagn. Microbiol. Infect. Dis. 63: 1-9. https://doi.org/10.1016/j.diagmicrobio.2008.09.006
  8. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. https://doi.org/10.1038/nrmicro818
  9. Lang AL, Tsai YL, Mayer CL, Patton KC, Palmer CJ. 1994. Multiplex PCR for detection of the heat-labile toxin gene and Shiga-like toxin I and II genes in Escherichia coli isolated from natural waters. Appl. Environ. Microbiol. 60: 3145-3149.
  10. Lasaro MA, Rodrigues JF, Mathias-Sanos C, Guth BE, Balan A, Sbrogio-Almeida ME, Ferreira LC. 2008. Genetic diversity of heat-labile toxin expressd by enterotoxigenic Escherichia coli strains isolated from humans. J. Bacteriol. 190: 2400-2410. https://doi.org/10.1128/JB.00988-07
  11. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201.
  12. Nataro JP, Deng Y, Walker K. 1994. AggR, a transcriptional activator of aggregative adherence factor I expression. J. Bacteriol. 176: 4691-4699. https://doi.org/10.1128/jb.176.15.4691-4699.1994
  13. Osek J. 2003. Development of a multiplex PCR approach for the identification of Shiga toxin-producing Escherichia coli strains and their major virulence factor genes. J. Appl. Microbiol. 95: 1217-1225. https://doi.org/10.1046/j.1365-2672.2003.02091.x
  14. Pass MA, Odedra R, Batt RM. 2000. Multiplex PCR for identification of Escherichia coli virulence genes. J. Clin. Microbiol. 38: 2001-2004.
  15. Rappelli P, Maddau G, Mannu F, Colombo MM, Fiori PL, Cappuccinelli P. 2001. Development of a set of multiplex PCR assays for the simultaneous identification of enterotoxigenic, enteropathogenic, enterohemorrhagic and enteroinvasive Escherichia coli. Microbiologica 24: 77-83.
  16. Savarino SJ, Fasano A, Watson J, Martin BM, Levine MM, Guandalini S, Guerry P. 1993. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another family of E. coli heat-stable toxin. Proc. Natl. Acad. Sci. USA 90: 3093- 3097. https://doi.org/10.1073/pnas.90.7.3093
  17. Sethabutr O, Venkatesan M, Yam S, Pang LW, Smoak BL, Sang WK, et al. 2000. Detection of PCR products of the ipaH gene from Shigella and enteroinvasive Escherichia coli by enzyme linked immunosorbent assay. Diagn. Microbiol. Infect. Dis. 37: 11-16. https://doi.org/10.1016/S0732-8893(00)00122-X
  18. Sheikh J, Czezulin JR, Harrington S, Hicks SI, Henderson R, Bouguenec Cle, et al. 2002. A novel dispersin protein in enteroaggregative Escherichia coli. J. Clin. Investig. 110: 1329- 1337. https://doi.org/10.1172/JCI16172
  19. Sjöling Å, Wiklund G, Savarino SJ, Cohen DI, Svennerholm AM. 2007. Comparative analyses of phenotypic and genotypic methods for detection of enterotoxigenic Escherichia coli toxins and colonization factors. J. Clin. Microbiol. 45: 3295- 3301. https://doi.org/10.1128/JCM.00471-07
  20. Tarr PI, Gordon CA, Handler CWL. 2005. Shiga-toxinproducing Escherichia coli and haemolytic uraemic syndrome. Lancet 365: 1073-1086.
  21. Tobias J, Vutukuru SR. 2012. Simple and rapid multiplex PCR for identification of the main human diarrheagenic Escherichia coli. Microbiol. Res. 167: 564-570. https://doi.org/10.1016/j.micres.2011.11.006
  22. Trabulsi LR, Keller R, Gomes TAT. 2002. Typical and atypical enteropathogenic Escherichia coli. Emerg. Infect. Dis. 8: 508-513. https://doi.org/10.3201/eid0805.010385
  23. Watterworth L, Topp E, Schraft H, Leung KT. 2005. Multiplex PCR-DNA probe assay for the detection of pathogenic Escherichia coli. J. Microbiol. Methods 60: 93-105. https://doi.org/10.1016/j.mimet.2004.08.016

Cited by

  1. Rapid Fluorescent Detection of Enterotoxigenic Escherichia coli (ETEC) K88 Based on Graphene Oxide-Dependent Nanoquencher and Klenow Fragment-Triggered Target Cyclic Amplification vol.69, pp.10, 2014, https://doi.org/10.1366/15-07881
  2. Outbreak of CTX-M-15-Producing Enterotoxigenic Escherichia coli O159:H20 in the Republic of Korea in 2016 vol.61, pp.9, 2014, https://doi.org/10.1128/aac.00339-17
  3. Comparative Evaluation of Seegene Allplex Gastrointestinal, Luminex xTAG Gastrointestinal Pathogen Panel, and BD MAX Enteric Assays for Detection of Gastrointestinal Pathogens in Clinical Stool Specim vol.143, pp.8, 2014, https://doi.org/10.5858/arpa.2018-0002-oa
  4. Identification of diarrheagenic Escherichia coli by a new multiplex PCR assay and capillary electrophoresis vol.49, pp.None, 2020, https://doi.org/10.1016/j.mcp.2019.101477
  5. Antibody Immobilization in Zinc Oxide Thin Films as an Easy-Handle Strategy for Escherichia coli Detection vol.5, pp.32, 2020, https://doi.org/10.1021/acsomega.0c02583
  6. Effect of the administration of Lactobacillus spp. strains on neonatal diarrhoea, immune parameters and pathogen abundance in pre-weaned calves vol.11, pp.5, 2020, https://doi.org/10.3920/bm2019.0167
  7. Performance Evaluation of the Novodiag Bacterial GE+ Multiplex PCR Assay vol.58, pp.10, 2014, https://doi.org/10.1128/jcm.01033-20
  8. Increased sensitivity of enterotoxigenic Escherichia coli detection in stool samples using oligonucleotide immobilized-magnetic nanoparticles vol.32, pp.None, 2014, https://doi.org/10.1016/j.btre.2021.e00677
  9. The predominance of Shiga toxin-producing E. coli in the Southeast Coast of India vol.174, pp.None, 2014, https://doi.org/10.1016/j.marpolbul.2021.113188
  10. Evaluation of the BioFire Gastrointestinal Panel to Detect Diarrheal Pathogens in Pediatric Patients vol.12, pp.1, 2014, https://doi.org/10.3390/diagnostics12010034