DOI QR코드

DOI QR Code

Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater

  • Kim, Byung-Hyuk (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kang, Zion (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ramanan, Rishiram (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, Jong-Eun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Cho, Dae-Hyun (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Hee-Sik (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2013.12.24
  • Accepted : 2014.04.19
  • Published : 2014.08.28

Abstract

This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at $85.44{\pm}5.10%$, $92.74{\pm}5.82%$, and $82.85{\pm}8.63%$, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of $0.50{\pm}0.03g/l/day$ and $0.103{\pm}0.0083g/l/day$ (2day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

Keywords

References

  1. Alvarez JA, Armstrong E, Gomez M, Soto M. 2008. Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions. Bioresour. Technol. 99: 7051-7062. https://doi.org/10.1016/j.biortech.2008.01.013
  2. APHA, AWWA, WEF. 2005. Standard Methods for the Examination of Water and Wastewater. APHA, Washington, DC, USA.
  3. Aslan S , Kapdan I K. 2006. B atch kinetics of n itrogen a nd phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
  4. Boelee NC, Temmink H, Janssen M, Buisman CJN, Wijffels RH. 2011. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Res. 45: 5925-5933. https://doi.org/10.1016/j.watres.2011.08.044
  5. Chan YJ, Chong MF, Law CL, Hassell DG. 2009. A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chem. Eng. J. 155: 1-18. https://doi.org/10.1016/j.cej.2009.06.041
  6. Chevalier P, Proulx D, Lessard P, Vincent WF, de la Noue J. 2000. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12: 105-112. https://doi.org/10.1023/A:1008168128654
  7. Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR. 2011. Algal biofuels from wastewater treatment high rate algal ponds. Water Sci. Technol. 63: 660-665. https://doi.org/10.2166/wst.2011.100
  8. de Bashan LE, Moreno M, Hernandez J-P, Bashan Y. 2002. Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res. 36: 2941-2948. https://doi.org/10.1016/S0043-1354(01)00522-X
  9. de Godos I, Gonzalez C, Becares E, Garcia-Encina PA, Munoz R. 2009. Simultaneous nutrients and carbon removal during pretreated swine slurry degradation in a tubular biofilm photobioreactor. Appl. Microbiol. Biotechnol. 82: 187-194. https://doi.org/10.1007/s00253-008-1825-3
  10. Garcia J, Mujeriego R, Hernandez-Marine M. 2000. High rate algal pond operation strategies for urban wastewater nitrogen removal. J. Appl. Phycol. 12: 331-339. https://doi.org/10.1023/A:1008146421368
  11. Hoffmann JP. 1998. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 34: 757-763. https://doi.org/10.1046/j.1529-8817.1998.340757.x
  12. Jeffrey SW, Humphrey GF. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae and natural phytoplancton. Biochem. Physiol. Pflanzen 167: 191-194. https://doi.org/10.1016/S0015-3796(17)30778-3
  13. Jiang L, Luo S, Fan X, Yang Z, Guo R. 2011. Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of $CO_{2}$. Appl. Energy 88: 3336-3341. https://doi.org/10.1016/j.apenergy.2011.03.043
  14. Kim B-H, Baek K-H, Cho D-H, Sung Y, Koh S-C, Ahn C-Y, et al. 2010. Complete reductive dechlorination of tetrachloroethene to ethene by anaerobic microbial enrichment culture developed from sediment. Biotechnol. Lett. 32: 1829-1835. https://doi.org/10.1007/s10529-010-0381-y
  15. Kim B-H, Ramanan R, Cho D-H, Choi G-G, La H-J, Ahn C-Y, et al. 2011. Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS One DOI: 10.1371/journal.pone. 0037770.
  16. Knothe G. 2008. "Designer" biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364. https://doi.org/10.1021/ef700639e
  17. Lee J-Y, Yoo C, Jun S-Y, Ahn C-Y, Oh H-M. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101: S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058
  18. Lee J, Cho D-H, Ramanan R, Kim B-H, Oh H-M, Kim H-S. 2013. Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour. Technol. 131: 195-201. https://doi.org/10.1016/j.biortech.2012.11.130
  19. Li Y, Chen Y-F, Chen P, Min M, Zhou W, Martinez B, et al. 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102: 5138-5144. https://doi.org/10.1016/j.biortech.2011.01.091
  20. Lundin M, Morrison GM. 2002. A life cycle assessment based procedure for development of environmental sustainability indicators for urban water systems. Urban Water 4: 145-152. https://doi.org/10.1016/S1462-0758(02)00015-8
  21. Medina M, Neis U. 2007. Symbiotic algal bacterial wastewater treatment: effect of food to microorganisms ratio and hydraulic retention time on the process performance. Water Sci. Technol. 55: 165-171.
  22. Miao X, Wu Q. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97: 841-846. https://doi.org/10.1016/j.biortech.2005.04.008
  23. Ministry of Environment. 2011. Environmental Statistics Yearbook 2011, Vol. 24. Ministry of Environment, Republic of Korea.
  24. Moheimani NR, Borowitzka MA. 2007. Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol. Bioeng. 96: 27-36. https://doi.org/10.1002/bit.21169
  25. Molina E, Fernandez J, Acien FG, Chisti Y. 2001. Tubular photobioreactor design for algal cultures. J. Biotechnol. 92: 113-131.
  26. Mujunen S-P, Minkkinen P, Teppola P, Wirkkala R-S. 1998. Modeling of activated sludge plants treatment efficiency with PLSR: a process analytical case study. Chemometrics Intell. Lab. Syst. 41: 83-94. https://doi.org/10.1016/S0169-7439(98)00025-2
  27. Oswald WJ. 1988. Micro-algae and Waste-water Treatment, pp. 305-328. Borowitzka MBL (ed.). Cambridge.
  28. Pawlik-Skowronska B. 2001. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors. Aquat. Toxicol. 52: 241-249. https://doi.org/10.1016/S0166-445X(00)00144-2
  29. Ramanan R, Kim B-H, Cho D-H, Ko S-R, Oh H-M, Kim H-S. 2013. Lipid droplet synthesis is limited by acetate availability in starchless mutant of Chlamydomonas reinhardtii. FEBS Lett. 587: 370-377. https://doi.org/10.1016/j.febslet.2012.12.020
  30. Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T. 2010. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101: 58-64. https://doi.org/10.1016/j.biortech.2009.02.076
  31. Sato N, Okubo T, Onodera T, Ohashi A, Harada H. 2006. Prospects for a self-sustainable sewage treatment system: a case study on full-scale UASB system in India's Yamuna River Basin. J. Environ. Manage. 80: 198-207. https://doi.org/10.1016/j.jenvman.2005.08.025
  32. Su Y, Mennerich A, Urban B. 2011. Municipal wastewater treatment and biomass accumulation with a wastewaterborn and settleable algal-bacterial culture. Water Res. 45: 3351-3358. https://doi.org/10.1016/j.watres.2011.03.046
  33. Su Y, Mennerich A, Urban B. 2012. Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresour. Technol. 105: 67-73. https://doi.org/10.1016/j.biortech.2011.11.113
  34. Tadesse I, Green FB, Puhakka JA. 2004. Seasonal a nd diurnal variations of temperature, pH and dissolved oxygen in advanced integrated wastewater pond system treating tannery effluent. Water Res. 38: 645-654. https://doi.org/10.1016/j.watres.2003.10.006
  35. Wang J, Zhang J, Xie H, Qi P, Ren Y, Hu Z. 2011. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresour. Technol. 102: 5479-5485. https://doi.org/10.1016/j.biortech.2010.10.090
  36. Wang L , Min M, Li Y, Chen P, Chen Y, Liu Y , et al. 2010. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162: 1174-1186. https://doi.org/10.1007/s12010-009-8866-7
  37. Xin L, Hong-ying H, Jia Y. 2010. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Phytol. 27: 59-63.
  38. Zhang X, Gillespie AL, Sessions AL. 2009. Large D/H variations in bacterial lipids reflect central metabolic pathways. Proc. Natl. Acad. Sci. USA 106: 12580-12586. https://doi.org/10.1073/pnas.0903030106

Cited by

  1. A Cost Analysis of Microalgal Biomass and Biodiesel Production in Open Raceways Treating Municipal Wastewater and under Optimum Light Wavelength vol.25, pp.1, 2015, https://doi.org/10.4014/jmb.1409.09019
  2. Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity vol.25, pp.9, 2014, https://doi.org/10.4014/jmb.1501.01033
  3. Impact of Microalgae-Bacteria Interactions on the Production of Algal Biomass and Associated Compounds vol.14, pp.5, 2014, https://doi.org/10.3390/md14050100
  4. Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors vol.26, pp.6, 2016, https://doi.org/10.4014/jmb.1601.01031
  5. Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture vol.11, pp.None, 2014, https://doi.org/10.1016/j.btre.2016.04.003
  6. Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential vol.91, pp.11, 2014, https://doi.org/10.1002/jctb.4901
  7. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds vol.106, pp.None, 2014, https://doi.org/10.1016/j.watres.2016.10.039
  8. Microalgal diversity fosters stable biomass productivity in open ponds treating wastewater vol.7, pp.None, 2014, https://doi.org/10.1038/s41598-017-02139-8
  9. The attachment potential and N-acyl-homoserine lactone-based quorum sensing in aerobic granular sludge and algal-bacterial granular sludge vol.102, pp.12, 2014, https://doi.org/10.1007/s00253-018-9002-9
  10. Bioflocculation in natural and engineered systems: current perspectives vol.38, pp.8, 2014, https://doi.org/10.1080/07388551.2018.1451984
  11. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment vol.38, pp.8, 2014, https://doi.org/10.1080/07388551.2018.1472066
  12. Nitrogen and Phosphorous Removal from Municipal Wastewater Using High Rate Algae Ponds vol.3, pp.1, 2014, https://doi.org/10.1007/s41403-018-0036-1
  13. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater vol.28, pp.4, 2014, https://doi.org/10.4014/jmb.1801.01014
  14. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia vol.2, pp.2, 2014, https://doi.org/10.1007/s41748-018-0050-1
  15. Optimization of a raceway pond system for wastewater treatment: a review vol.39, pp.3, 2014, https://doi.org/10.1080/07388551.2019.1571007
  16. Surfactant removal and biomass production in a microalgal-bacterial process: effect of feeding regime vol.82, pp.6, 2014, https://doi.org/10.2166/wst.2020.276
  17. Current advances in microalgae-based treatment of high-strength wastewaters: challenges and opportunities to enhance wastewater treatment performance vol.20, pp.1, 2014, https://doi.org/10.1007/s11157-020-09556-8
  18. Performance of temperature changes and dosage for enhancement of nitrogen and phosphorus removal from wastewater: A comparative study vol.1895, pp.1, 2014, https://doi.org/10.1088/1742-6596/1895/1/012033
  19. Enhanced biomass production of Synechocystis sp. PCC 6803 by two associated bacteria Paenibacillus camelliae and Curtobacterium ammoniigenes vol.204, pp.1, 2014, https://doi.org/10.1007/s00203-021-02711-x
  20. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy vol.344, pp.no.pb, 2022, https://doi.org/10.1016/j.biortech.2021.126397
  21. Cultivation of two Chlorella species in Open sewage contaminated channel wastewater for biomass and biochemical profiles: Comparative lab-scale approach vol.344, pp.None, 2014, https://doi.org/10.1016/j.jbiotec.2021.11.006
  22. Enhancement of co-conversion of endogenous carbon and nitrogen of dairy wastewater in mesophilic hydrolysis-acidification coupled microalgae culture system by rhamnolipid vol.179, pp.None, 2014, https://doi.org/10.1016/j.bej.2021.108314