• Title/Summary/Keyword: Algal consortium

Search Result 8, Processing Time 0.02 seconds

Nutrient Removal and Biofuel Production in High Rate Algal Pond Using Real Municipal Wastewater

  • Kim, Byung-Hyuk;Kang, Zion;Ramanan, Rishiram;Choi, Jong-Eun;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1123-1132
    • /
    • 2014
  • This study evaluated the growth and nutrient removal ability of an indigenous algal consortium on real untreated municipal wastewater in a high rate algal pond (HRAP). The HRAP was operated semicontinuously under different hydraulic retention times (HRT: 2, 4, 6, and 8 days). The average removal efficiencies of chemical oxygen demand, and total nitrogen and phosphate of real municipal wastewater were maintained at $85.44{\pm}5.10%$, $92.74{\pm}5.82%$, and $82.85{\pm}8.63%$, respectively, in 2 day HRT. Algae dominated the consortium and showed high settling efficiency (99%), and biomass and lipid productivity of $0.50{\pm}0.03g/l/day$ and $0.103{\pm}0.0083g/l/day$ (2day HRT), respectively. Fatty acid methyl ester analysis revealed a predominance of palmitate (C16:0), palmitoleate (C16:1), linoleate (C18:2), and linolenate (C18:3). Microalgal diversity analyses determined the presence of Chlorella, Scenedesmus, and Stigeoclonium as the dominant microalgae. The algal consortium provides significant value not only in terms of energy savings and nutrient removal but also because of its bioenergy potential as indicated by the lipid content (20-23%) and FAME profiling.

Development of Improving Water Quality in Eutrophic Lake Using Microalgal Cultivation (미세조류 배양을 이용한 부영양호 내 수질 개선 기술 개발)

  • Kim, Ki-Hyun;Kang, Sung-Mo;Cho, Yonghee;Jeon, Sanghyun;Kim, Jun-Ho;Park, Hanwool;Lee, Yunwoo;Jeong, Jeongho;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2018
  • There are many eutrophic lakes by point and non-point pollution sources such as in dustrial waste water, domestic raw sewage, and mucks. The eutrophic lakes not only cause algal blooms but also destroy the ecosystem in the lakes due to high nutrient concentrations. The purpose of this study was to improve water quality in eutrophic lakes by cultivating microalgae using photobioreactors (PBRs) with selectively permeable mesh (SPM), supplying nutrients in the lake and inhibiting cell leakage by diffusion and water permeability. Chlorella vulgaris, was cultivated using PBRs with SPM installed in Inkyung Lake located in Inha university, Incheon, Korea. When cultivating C. vulgaris, $8.3g/m^2/day$ of average biomass productivity was obtained at 3 days. Furthermore, concentrations of total nitrogen and phosphorus were reduced by 35.7% and 84.2%, respectively, compared to initial condition and water quality in eutrophic lake was improved to oligotrophic environment. These results suggest that microalgal cultivation using PBRs with SPM in the lake could produce microalgal biomass as well as improve water quality by decreasing nutrient concentrations.

Comparison of Filtration Efficiency of Membranes for Harvesting Microalgae using a Gravity-Filtration Device (중력 여과장치 이용 미세조류 수확을 위한 여과막의 효율성 비교)

  • Shin, Dong-Woo;Cho, Yonghee;Kim, Ki-Hyun;Kim, HanByeol;Park, Hanwool;Kim, Z-Hun;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • Cost-effective microalgae harvesting methods are necessary for economical production of algal biodiesel. In this study, membranes with various pore sizes and materials were examined for their potentials in application to gravity-filtration of Tetraselmis sp. KCTC12432BP. For this test, 10 L of Tetraselmis sp. culture (2 g/L) was loaded on each membrane and filtration rates were measured. Among the tested materials, a woven cotton fabric showed the fastest water drain rate (0.73 L/hr) without serious cell leakage. Cell density of the concentrates after filtration was 6.8 g/L, indicating 3.4-fold concentration compared with the initial algal culture. The result suggests that the woven cotton fabric could serve as filtration membrane for harvesting Tetraselmis sp. among the tested ones.

Isolation and Characterization of Five Isolates of Tetraselmis sp. with Rapid Growth Rates in Low Temperatures (저온 생장성이 우수한 분리 미세조류 Tetraselmis sp. 5개주의 생장 패턴 및 지방산 조성 분석)

  • Park, Hanwool;Hoh, Donghee;Shin, Dong-Woo;Kim, Z-Hun;Hong, Seong-Joo;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.11 no.1
    • /
    • pp.23-28
    • /
    • 2019
  • For successful microalgal biodiesel production, the strain should be selected carefully. Fast growth rate and high fatty acid contents are desired traits for algal biodiesel production. In ocean cultivation of microalgae, seawater temperature slowly changes over seasons, and rotating algal strains in accordance with their optimal temperature could improve overall productivity. Additionally, use of indigenous strain is preferred to alleviate potential impacts on the environment. In this study, five strains of Tetraselmis sp. from nearshore of Youngheung Island, Incheon, Korea, were isolated during winter and characterized for their growth patterns and fatty acid compositions in the low temperatures ($5-15^{\circ}C$). The five strains showed various characteristics in optimal growth temperature, fatty acid contents, and compositions. Compared with a strain of Tetraselmis sp., isolated from Ganghwa island in a previous study, a rapid-growing strain with 237% higher biomass productivity and an oleaginous strain with twice higher fatty acid contents at $10^{\circ}C$ were isolated. The oleaginous Tetraselmis strain showed the highest fatty acid productivity among the strains, having 438% higher productivity than the previous strain. Using the new isolates in the seasons with low seawater temperature would improve microalgal fatty acid productivity in ocean cultivation.

Effects of sludge and $CO_2$ addition on advanced treatment of swine wastewater by using microalgae (미세조류를 이용한 양돈폐수 고도처리에서 슬러지 및 이산화탄소의 첨가의 영향)

  • Lim, Byung-Ran;Park, Ki-Young;Lee, Ki-Say;Lee, Soo-Koo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.307-312
    • /
    • 2011
  • The potential of algal-bacterial culture was investigated for advanced treatment of animal wastewater. Fed-batch experiments were carried out to examine treatability of nitrogen and phosphorus in different microbial consortium: Chlorella vulgaris, activated sludge, three microalgae strains (Scenedesmus, Microcystis, Chlorella) and Bacillus consortium, and three microalgae strains and sludge consortium. Single culture of C. vugaris showed the better efficiency for nitrogen removal but was not good at organic matter and phosphorus removal compared with activated sludge. Three microalgae and Bacillus consortium was best culture among the culture and consortium for pollutants removal tested in this experiment. Effect of $CO_2$ addition was studied by using three microalgae and Bacillus consortium. $CO_2$ addition enhanced T-P removal efficiency up to 60%. However, removal efficiencies of T-N and ammonia nitrogen reduced on the contrary.

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes (부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상)

  • Kim, Kwangmin;Lee, Yunwoo;Kim, Z-Hun;Park, Hanwool;Jung, Injae;Park, Jaehoon;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

Characteristics of Biorefinery Process Using Laminaria japonica for the Production of Carbohydrate and Reducing Sugar (Laminaria japonica를 이용하여 탄수화물과 환원당 생산을 위한 바이오리파이너리 공정 특성)

  • Kim, Ji Hyun;Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.627-632
    • /
    • 2019
  • In this study, Laminaria japonica was used as a substrate for a mixed aerobic microbial consortium. Laminaria japonica is well-known as a representative brown algal biomass possessing advantages of cheap cost, and high productivity and carbohydrate content. A biological saccharification system was established by inoculating and enriching the mixed aerobic microbial consortium. Production of the soluble carbohydrate and reducing sugar at different hydraulic retention times (HRT) was observed. The efficiency of saccharification increased according to the decrease of HRT. The maximum saccharification yield in a continuous biological pretreatment process was 17.96 and 4.30 g/L/day for the soluble carbohydrate and reducing sugar, respectively at the HRT of 1 day. In contrast, the staccharification yield decreased drastically at the HRT of 0.5 day. Experimental results indicate that Laminaria japonica is a promising material for the production of useful products, in particular for the saccharification through a biorefinery process. It can thus be concluded that a continuous biological pretreatment process using a mixed cultivation system can be successfully employed for the biorefinery technology.

Enhanced and Balanced Microalgal Wastewater Treatment (COD, N, and P) by Interval Inoculation of Activated Sludge

  • Lee, Sang-Ah;Lee, Nakyeong;Oh, Hee-Mock;Ahn, Chi-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1434-1443
    • /
    • 2019
  • Although chemical oxygen demand (COD) is an important issue for wastewater treatment, COD reduction with microalgae has been less studied compared to nitrogen or phosphorus removal. COD removal is not efficient in conventional wastewater treatment using microalgae, because the algae release organic compounds, thereby finally increasing the COD level. This study focused on enhancing COD removal and meeting the effluent standard for discharge by optimizing sludge inoculation timing, which was an important factor in forming a desirable algae/bacteria consortium for more efficient COD removal and higher biomass productivity. Activated sludge has been added to reduce COD in many studies, but its inoculation was done at the start of cultivation. However, when the sludge was added after 3 days of cultivation, at which point the COD concentration started to increase again, the algal growth and biomass productivity were higher than those of the initial sludge inoculation and control (without sludge). Algal and bacterial cell numbers measured by qPCR were also higher with sludge inoculation at 3 days later. In a semi-continuous cultivation system, a hydraulic retention time of 5 days with sludge inoculation resulted in the highest biomass productivity and N/P removal. This study achieved a further improved COD removal than the conventional microalgal wastewater treatment, by introducing bacteria in activated sludge at optimized timing.