참고문헌
- Aceti DJ, Champness WC. 1998. Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absB loci. J. Bacteriol. 180: 3100-3106.
- Bibb MJ. 2005. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8: 208-215. https://doi.org/10.1016/j.mib.2005.02.016
- Challis GL, Hopwood DA. 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc. Natl. Acad. Sci. USA 100: 14555-14561. https://doi.org/10.1073/pnas.1934677100
- Chater KF. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713. https://doi.org/10.1146/annurev.mi.47.100193.003345
- Chaudhary AK, Dhakal D, Sohng JK. 2013. An insight into the -omics based engineering of streptomycetes for secondary metabolite overproduction. Biomed. Res. Int. 2013: 1-15.
- Chaudhary AK, Park JW, Yoon YJ, Kim BG, Sohng JK. 2013. Re-engineering of genetic circuit for 2-deoxystreptamine (2- DOS) biosynthesis in Escherichia coli BL21 (DE3). Biotechnol. Lett. 35: 285-293. https://doi.org/10.1007/s10529-012-1077-2
- Feitelson JS, Malpartida F, Hopwood DA. 1985. Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3 (2). J. Gen. Microbiol. 131: 2431-2441.
- Flardh K, Buttner MJ. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7: 36-49. https://doi.org/10.1038/nrmicro1968
- Furuya K, Hutchinson CR. 1996. The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J. Bacteriol. 178: 6310-6318. https://doi.org/10.1128/jb.178.21.6310-6318.1996
- Gramajo HC, Takano E, Bibb MJ. 1993. Stationary-phase production of the antibiotic actinorhodin in Streptomyces coelicolor A3 (2) is transcriptionally regulated. Mol. Microbiol. 7: 837-845. https://doi.org/10.1111/j.1365-2958.1993.tb01174.x
- Gui L, Sunnarborg A, Pan B, LaPorte DC. 1996. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J. Bacteriol. 178: 321-324. https://doi.org/10.1128/jb.178.1.321-324.1996
- Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ. 2004. Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3 (2). Microbiology 150: 2795-2806. https://doi.org/10.1099/mic.0.27181-0
- Ishizuka H, Beppu T, Horinouchi S. 1995. Involvement of a small ORF downstream of the afsR gene in the regulation of secondary metabolism in Streptomyces coelicolor A3 (2). Actinomycetologica 9: 37-43. https://doi.org/10.3209/saj.9_37
- Jha AK, Lamichhane J, Sohng JK. 2014. Enhancement of herboxidiene production in Streptomyces chromofuscus ATCC 49982. J. Microbial. Biotechnol. 24: 52-58. https://doi.org/10.4014/jmb.1308.08063
- Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, UK.
- Lorca GL, Ezersky A, Lunin VV, Walker JR, Altamentova S, Evdokimova E, et al. 2007. Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J. Biol. Chem. 282: 16476-16491. https://doi.org/10.1074/jbc.M610838200
- MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68. https://doi.org/10.1016/0378-1119(92)90603-M
- Malpartida F, Hopwood DA. 1986. Physical and genetic characterisation of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3 (2). Mol. Gen. Genet. 205: 66-73. https://doi.org/10.1007/BF02428033
- McKenzie NL, Nodwell JR. 2007. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J. Bacteriol. 189: 5284-5292. https://doi.org/10.1128/JB.00305-07
- Negre D , Cortay JC, Old IG, Galinier A, Richaud C , Saint Girons I, Cozzone AJ. 1991. Overproduction and characterization of the iclR gene product of Escherichia coli K-12 and comparison with that of Salmonella typhimurium LT2. Gene 97: 29-37. https://doi.org/10.1016/0378-1119(91)90006-W
- Otten SL, Ferguson J, Hutchinson CR. 1995. Regulation of daunorubicin production in Streptomyces peucetius by the dnrR2 locus. J. Bacteriol. 177: 1216-1224. https://doi.org/10.1128/jb.177.5.1216-1224.1995
- Otten SL, Olano C, Hutchinson CR. 2000. The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146: 1457-1468. https://doi.org/10.1099/00221287-146-6-1457
- Ramos JL, Martinez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, et al. 2005. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69: 326-356. https://doi.org/10.1128/MMBR.69.2.326-356.2005
- Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- Santamarta I, Lopez-Garcia MT, Perez-Redondo R, Koekman B, Martin JF, Liras P. 2007. Connecting primary and secondary metabolism: AreB, an IclR-like protein, binds the AREccaR sequence of S. clavuligerus and modulates leucine biosynthesis and cephamycin C and clavulanic acid production. Mol. Microbiol. 66: 511-524. https://doi.org/10.1111/j.1365-2958.2007.05937.x
- Sevcikova B, Kormanec J. 2004. Differential production of two antibiotics of Streptomyces coelicolor A3 (2), actinorhodin and undecylprodigiosin, upon salt stress conditions. Arch. Microbiol. 181: 384-389. https://doi.org/10.1007/s00203-004-0669-1
- Singh B, Lee CB, Sohng JK. 2010. P recursor for b iosynthesis of sugar moiety of doxorubicin depends on rhamnose biosynthetic pathway in Streptomyces peucetius ATCC 27952. Appl. Microbiol. Biotechnol. 85: 1565-1574. https://doi.org/10.1007/s00253-009-2225-z
- Sola-Landa A, Moura RS, Martin JF. 2003. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Nat. Acad. Sci. USA 100: 6133-6138. https://doi.org/10.1073/pnas.0931429100
- Sthapit B , Oh TJ, Lamichhane R , Liou K, Lee HC, Kim CG, Sohng JK. 2004. Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206. https://doi.org/10.1016/j.febslet.2004.04.033
- Takano E. 2006. Gamma-butyrolactones: Streptomyces signaling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9: 287-294. https://doi.org/10.1016/j.mib.2006.04.003
- Takano E, Gramajo HC, Strauch E, Andres N, White J, Bibb MJ. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3 (2). Mol. Microbiol. 19: 2797-2804.
- Traag BA, Kelemen GH, Van Wezel GP. 2004. Transcription of the sporulation gene ssgA is activated by the IclR-type regulator SsgR in a whi-independent manner in Streptomyces coelicolor A3 (2). Mol. Microbiol. 53: 985-1000. https://doi.org/10.1111/j.1365-2958.2004.04186.x
- Tropel D, van der Meer J R. 2004. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol. Mol. Biol. Rev. 68: 474-500. https://doi.org/10.1128/MMBR.68.3.474-500.2004
- Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S , McDowall KJ. 2005. Transcriptional activation of the pathwayspecific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol. Microbiol. 58: 131-150. https://doi.org/10.1111/j.1365-2958.2005.04817.x
- Xu D, Seghezzi N, Esnault C, Virolle MJ. 2010. Repression of antibiotic production and sporulation in Streptomyces coelicolor by overexpression of a TetR family transcriptional regulator. Appl. Environ. Microbiol. 76: 7741-7753. https://doi.org/10.1128/AEM.00819-10
- Xue C, Duan Y, Zhao F, Lu W. 2013. Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering. Biochem. Eng. J. 72: 90-95. https://doi.org/10.1016/j.bej.2013.01.007
- Yang H, An Y, Wang L, Zhang S, Zhang Y , Tian Y, et al. 2010. Autoregulation of hpdR and its effect on CDA biosynthesis in Streptomyces coelicolor. Microbiology 156: 2641- 2648. https://doi.org/10.1099/mic.0.038604-0
- Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, et al. 2009. NdgR, an IclR-like regulator involved in amino-aciddependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 82: 501-511. https://doi.org/10.1007/s00253-008-1802-x
- Zhang RG, Kim Y, Skarina T, Beasley S, Laskowski R, Arrowsmith C, et al. 2002. Crystal structure of Thermotoga maritima 0 065, a m ember o f the IclR t ranscriptional f actor family. J. Biol. Chem. 277: 19183-19190. https://doi.org/10.1074/jbc.M112171200
피인용 문헌
- Paired-termini antisense RNA mediated inhibition of DoxR in Streptomyces peucetius ATCC 27952 vol.20, pp.3, 2014, https://doi.org/10.1007/s12257-014-0810-1
- An overview on transcriptional regulators in Streptomyces vol.1849, pp.8, 2014, https://doi.org/10.1016/j.bbagrm.2015.06.007
- Nonribosomal peptides synthetases and their applications in industry vol.4, pp.1, 2014, https://doi.org/10.1186/s40508-016-0057-6
- Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect vol.102, pp.10, 2018, https://doi.org/10.1007/s00253-018-8957-x
- Regulatory non-coding sRNAs in bacterial metabolic pathway engineering vol.52, pp.None, 2019, https://doi.org/10.1016/j.ymben.2018.11.013
- Construction and application of a “superplasmid” for enhanced production of antibiotics vol.104, pp.4, 2014, https://doi.org/10.1007/s00253-019-10283-6