DOI QR코드

DOI QR Code

냉간 압축 성형한 Mg3Sb2 열전재료의 고상 반응 소결

Solid state reactive sintering of cold pressed thermoelectric Mg3Sb2

  • 김인기 (한서대학교 신소재공학과) ;
  • 장경욱 (한서대학교 신소재공학과) ;
  • 오한준 (한서대학교 신소재공학과)
  • Kim, In-Ki (Department of Materials Science and Engineering, Hanseo University) ;
  • Jang, Kyung-Wook (Department of Materials Science and Engineering, Hanseo University) ;
  • Oh, Han-Jun (Department of Materials Science and Engineering, Hanseo University)
  • 투고 : 2014.07.25
  • 심사 : 2014.08.11
  • 발행 : 2014.08.31

초록

상온 압축 성형 후 고상 반응 소결 공정을 통하여 $Mg_3Sb_2$ 소결체를 제조하고자 하였다. Mg과 Sb의 성분의 몰비와 반응온도에 따른 결정상의 변화를 조사하였다. 773~843 K에서 얻어진 고상반응 소결체들은 전형적인 $Mg_3Sb_2$ 결정상을 형성하였으나 소결체의 위치에 따라 약간 다른 상적 구성을 보였다. 소결체 하단 부위에서 전형적으로 얻어지는 결정상이 얻어졌으며 823 K 온도에서는 Mg : Sb = 3.15 : 1.85 조성일 때, 843 K 온도에서는 Mg의 몰 수가 3.10 이상인 모든 조성에서 ${\alpha}-Mg_3Sb_2$ 상과 정확히 일치하는 결정상이 얻어졌다. 미량 남아있는 Mg 성분은 응고 후 냉각 시 ${\alpha}-Mg_3Sb_2$ 상으로부터 석출된 것으로 보인다.

We intended to prepare $Mg_3Sb_2$ compound bodies through solid state reactive sintering after cold-pressing mixtures of elementary Mg and Sb powders and investigated the crystal phases of the sintered bodies according to Mg/Sb mole ratios and reaction temperatures. The $Mg_3Sb_2$ bodies sintered at the temperatures of 773~843 K showed typical crystalline phases of $Mg_3Sb_2$ compounds, but their diffraction angles in XRD patterns were slightly different along with the vertical axis of the bodies obtained. All the bottom parts of the sintered $Mg_3Sb_2$ bodies were composed of the typical crystalline phases of $Mg_3Sb_2$ compounds and their diffraction angles were completely in accord with those of the ${\alpha}-Mg_3Sb_2$ phase, when Mg : Sb = 3.15 : 1.85 at 823 K, or when the Mg moles were greater than or equal to 3.10 at 843 K. It was considered that the slightly remaining Mg phases were formed by precipitation from ${\alpha}-Mg_3Sb_2$ phases during the solidification process of liquid phase.

키워드

참고문헌

  1. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir and M. Mohamad, "A review on thermoelectric renewable energy: Principle parameters that affect their performance", Renewable and Sustainable Energy Reviews 30 (2014) 337. https://doi.org/10.1016/j.rser.2013.10.027
  2. D. Enescu and E.O. Virjoghe, "A review on thermoelectric cooling parameters and performance", Renewable and Sustainable Energy Reviews 38 (2014) 903. https://doi.org/10.1016/j.rser.2014.07.045
  3. A. Date, A. Date, C. Dixon and A. Akbarzadeh, "Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation", Renewable and Sustainable Energy Reviews 33 (2014) 371. https://doi.org/10.1016/j.rser.2014.01.081
  4. T. Kajikawa, N. Kimura and T. Yokoyama, "Thermoelectric properties of intermetallic compounds: $Mg_3Bi_2$ and $Mg_3Sb_2$ for medium temperature range thermoelectric elements", Proc. the 22nd Int. Conf. on Thermoelectrics (2003) 305.
  5. F. Ahmadpour, T. Kolodiazhnyi and Y. Mozharivsky, "Structural and physical properties of $Mg_{3-x}Zn_xSb_2$ (x = 0-1.34)", J. Solid State Chem. 180 (2007) 2427.
  6. H.X. Xin, X.Y. Qin, X.G. Zhu, J. Zhang and M.G. Kong, "Fabrication of nanocrystalline $Mg_3X_2$ (X = Bi, Sb) with supersaturated solid solubility by mechanical alloying", Mater. Sci. Eng. B 128 (2006) 192. https://doi.org/10.1016/j.mseb.2005.12.001
  7. C. Suryanarayana, E. Ivanov and V.V. Boldyrev, "The science and technology of mechanical alloying", Mater. Sci. Eng. A304-306 (2001) 151.
  8. I.K. Kim, "Fabrication of $Mg_3Sb_2$ and $Mg_3Bi_2$ compounds and their composites by mechanical alloying", J. Korean Cryst. Growth Cryst. Technol. 23(4) (2013) 189. https://doi.org/10.6111/JKCGCT.2013.23.4.189
  9. I.K. Kim, K.W. Jang and I.H. Kim, "Thermoelectric properties of $Mg_{3-x}Zn_xSb_2$ fabricated by mechanical alloying", Kor. J. Mater. Res. 23(2) (2013) 98. https://doi.org/10.3740/MRSK.2013.23.2.98
  10. A.A. Nayeb-Hashemi and J.B. Clark, "The Mg-Sb (Magnesium-Antimony) system", Bulletin of Alloy Phase Diagrams 5 (1984) 579. https://doi.org/10.1007/BF02868320
  11. C.L. Condron, S.M. Kauzlarich, F. Gascoin and G.J. Snyder, "Thermoelectric properties and microstructure of $Mg_3Sb_2$", J. Solid State Chem. 179 (2006) 2253.
  12. H.X. Xin, X.Y. Qin, X.G. Zhu and Y. Liu, "Temperature dependence of electrical resistivity for nanocrystalline $Mg_{3+x}Sb_2$ prepared by mechanical alloying", J. Phys. D Appl. Phys. 39 (2006) 375. https://doi.org/10.1088/0022-3727/39/2/020