DOI QR코드

DOI QR Code

2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling

  • Park, So Jeong (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Park, Doo Ri (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Bhattarai, Deepak (BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University) ;
  • Lee, Kyeong (BK21 Plus R-FIND Team, College of Pharmacy, Dongguk University) ;
  • Kim, Jaesang (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Bae, Yun Soo (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University) ;
  • Lee, Soo Young (Department of Life Science and the Research Center for Cellular Homeostasis, Ewha Womans University)
  • Received : 2014.07.03
  • Accepted : 2014.07.28
  • Published : 2014.08.31

Abstract

2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The inhibitory effect of (R)-TEMOSPho on osteoclasts was due to a disruption of the actin cytoskeleton, resulting from impaired downstream signaling of c-Fms, a receptor for macrophage-colony stimulating factor linked to c-Cbl, phosphoinositol-3-kinase (PI3K), Vav3, and Rac1. In addition, (R)-TEMOSPho blocked inflammation-induced bone destruction by reducing the numbers of osteoclasts produced in mice. Thus, (R)-TEMOSPho may represent a promising new class of antiresorptive drugs for the treatment of bone loss associated with increased osteoclast maturation and activity.

Keywords

References

  1. Adapala, N.S., Barbe, M.F., Langdon, W.Y., Tsygankov, A.Y., and Sanjay, A. (2010). Cbl-phosphatidylinositol 3 kinase interaction differentially regulates macrophage colony-stimulating factor-mediated osteoclast survival and cytoskeletal reorganization. Ann. N Y Acad. Sci. 1192, 376-384. https://doi.org/10.1111/j.1749-6632.2009.05346.x
  2. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  3. Burgess, T.L., Qian, Y., Kaufman, S., Ring, B.D., Van, G., Capparelli, C., Kelley, M., Hsu, H., Boyle, W.J., Dunstan, C.R., et al. (1999). The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Biol. 145, 527-538. https://doi.org/10.1083/jcb.145.3.527
  4. Crabtree, G.R., and Olson, E.N. (2002). NFAT signaling: choreographing the social lives of cells. Cell 109 S67-79. https://doi.org/10.1016/S0092-8674(02)00699-2
  5. Dai, X.M., Ryan, G.R., Hapel, A.J., Dominguez, M.G., Russell, R.G., Kapp, S., Sylvestre, V., and Stanley, E.R. (2002). Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99, 111-120. https://doi.org/10.1182/blood.V99.1.111
  6. Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629-635. https://doi.org/10.1038/nature01148
  7. Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290. https://doi.org/10.1038/nm1194
  8. Faccio, R., Takeshita, S., Colaianni, G., Chappel, J., Zallone, A., Teitelbaum, S.L., and Ross, F.P. (2007). M-CSF regulates the cytoskeleton via recruitment of a multimeric signaling complex to c-Fms Tyr-559/697/721. J. Biol. Chem. 282, 18991-18999. https://doi.org/10.1074/jbc.M610937200
  9. Fuller, K., Owens, J.M., Jagger, C.J., Wilson, A., Moss, R., and Chambers, T.J. (1993). Macrophage colony-stimulating factor stimulates survival and chemotactic behavior in isolated osteoclasts. J. Exp. Med. 178, 1733-1744. https://doi.org/10.1084/jem.178.5.1733
  10. Grey, A., Chen, Y., Paliwal, I., Carlberg, K., and Insogna, K. (2000). Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 141, 2129-2138. https://doi.org/10.1210/endo.141.6.7480
  11. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science 279, 509-514. https://doi.org/10.1126/science.279.5350.509
  12. Harada, S., and Rodan, G.A. (2003). Control of osteoblast function and regulation of bone mass. Nature 423, 349-355. https://doi.org/10.1038/nature01660
  13. Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232. https://doi.org/10.1101/gad.1102703
  14. Karsenty, G., and Wagner, E.F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389-406. https://doi.org/10.1016/S1534-5807(02)00157-0
  15. Kim, Y.A., Chung, H.M., Park, J.S., Choi, W., Min, J., Park, N.H., Kim, K.H., Jhon, G.J., and Han, S.Y. (2003). Synthesis of novel lysophosphatidylcholine analogues using serine as chiral template. J. Org. Chem. 68, 10162-10165. https://doi.org/10.1021/jo034969s
  16. Kodama, H., Nose, M., Niida, S., and Yamasaki, A. (1991). Essential role of macrophage colony-stimulating factor in the osteoclast differentiation supported by stromal cells. J. Exp. Med. 173, 1291-1294. https://doi.org/10.1084/jem.173.5.1291
  17. Kwak, H.B., Lee, S.W., Li, Y.J., Kim, Y.A., Han, S.Y., Jhon, G.J., Kim, H.H., and Lee, Z.H. (2004). Inhibition of osteoclast differentiation and bone resorption by a novel lysophosphatidylcholine derivative, SCOH. Biochem. Pharmacol. 67, 1239-1248. https://doi.org/10.1016/j.bcp.2003.10.032
  18. Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409.
  19. Leibbrandt, A., and Penninger, J.M. (2009). RANKL/RANK as key factors for osteoclast development and bone loss in arthropathies. Adv. Exp. Med. Biol. 649, 100-113. https://doi.org/10.1007/978-1-4419-0298-6_7
  20. Limb, J.K., Song, D., Jeon, M., Han, S.Y., Han, G., Jhon, G.J., Bae, Y.S., and Kim, J. (2012). 2-(Trimethylammonium)ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate promotes megakaryocytic differentiation of myeloid leukaemia cells and primary human CD34(+) haematopoietic stem cells. J. Tissue Eng. Regen. Med. [Epub ahead of print]
  21. Marks, S.C. Jr., Wojtowicz, A., Szperl, M., Urbanowska, E., MacKay, C.A., Wiktor-Jedrzejczak, W., Stanley, E.R., and Aukerman, S.L. (1992). Administration of colony stimulating factor-1 corrects some macrophage, dental, and skeletal defects in an osteopetrotic mutation (toothless, tl) in the rat. Bone 13, 89-93. https://doi.org/10.1016/8756-3282(92)90365-4
  22. Pixley, F.J. and Stanley, E.R. (2004). CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 14, 628-638. https://doi.org/10.1016/j.tcb.2004.09.016
  23. Razzouk, S., Lieberherr, M., and Cournot, G. (1999). Rac-GTPase, osteoclast cytoskeleton and bone resorption. Eur. J. Cell Biol. 78, 249-255. https://doi.org/10.1016/S0171-9335(99)80058-2
  24. Ridley, A.J. (2001a). Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471-477. https://doi.org/10.1016/S0962-8924(01)02153-5
  25. Ridley, A.J. (2001b). Rho GTPases and cell migration. J. Cell Sci. 114, 2713-2722.
  26. Ross, F.P. (2006). M-CSF, c-Fms, and signaling in osteoclasts and their precursors. Ann. N Y Acad. Sci. 1068, 110-116. https://doi.org/10.1196/annals.1346.014
  27. Sakai, H., Chen, Y., Itokawa, T., Yu, K.P., Zhu, M.L., and Insogna, K. (2006). Activated c-Fms recruits Vav and Rac during CSF-1-induced cytoskeletal remodeling and spreading in osteoclasts. Bone 39, 1290-1301. https://doi.org/10.1016/j.bone.2006.06.012
  28. Schmidt, A., and Hall, A. (2002). Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587-1609. https://doi.org/10.1101/gad.1003302
  29. Suda, T., Jimi, E., Nakamura, I., and Takahashi, N. (1997). Role of 1 alpha,25-dihydroxyvitamin D3 in osteoclast differentiation and function. Methods Enzymol. 282, 223-235. https://doi.org/10.1016/S0076-6879(97)82110-6
  30. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345-357. https://doi.org/10.1210/edrv.20.3.0367
  31. Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
  32. Teitelbaum, S.L. (2007). Osteoclasts: what do they do and how do they do it? Am. J. Pathol. 170, 427-435. https://doi.org/10.2353/ajpath.2007.060834
  33. Vaananen, H.K., Zhao, H., Mulari, M., and Halleen, J.M. (2000). The cell biology of osteoclast function. J. Cell Sci. 113, 377-381.
  34. Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A.W. Jr., Ahmed-Ansari, A., Sell, K.W., Pollard, J.W., and Stanley, E.R. (1990). Total absence of colony-stimulating factor 1 in the macrophagedeficient osteopetrotic (op/op) mouse. Proc. Natl. Acad. Sci. USA 87, 4828-4832. https://doi.org/10.1073/pnas.87.12.4828

Cited by

  1. Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases vol.16, pp.1, 2016, https://doi.org/10.1038/nrd.2016.231
  2. Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation vol.6, pp.1, 2016, https://doi.org/10.1038/srep26186
  3. The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice pp.0951418X, 2018, https://doi.org/10.1002/ptr.6224
  4. Vγ9Vδ2 T cells inhibit immature dendritic cell transdifferentiation into osteoclasts through downregulation of RANK, c-Fos and ATP6V0D2 vol.42, pp.4, 2014, https://doi.org/10.3892/ijmm.2018.3791