DOI QR코드

DOI QR Code

Upregulation of miR-760 and miR-186 Is Associated with Replicative Senescence in Human Lung Fibroblast Cells

  • Lee, Young-Hoon (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Kim, Soo Young (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Bae, Young-Seuk (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2014.06.09
  • Accepted : 2014.07.22
  • Published : 2014.08.31

Abstract

We have previously shown that microRNAs (miRNAs) miR-760, miR-186, miR-337-3p, and miR-216b stimulate premature senescence through protein kinase CK2 (CK2) downregulation in human colon cancer cells. Here, we examined whether these four miRNAs are involved in the replicative senescence of human lung fibroblast IMR-90 cells. miR-760 and miR-186 were significantly upregulated in replicatively senescent IMR-90 cells, and their joint action with both miR-337-3p and miR-216b was necessary for efficient downregulation of the ${\alpha}$ subunit of CK2 ($CK2{\alpha}$) in IMR-90 cells. A mutation in any of the four miRNA-binding sequences within the $CK2{\alpha}3^{\prime}$-untranslated region (UTR) indicated that all four miRNAs should simultaneously bind to the target sites for $CK2{\alpha}$ downregulation. The four miRNAs increased senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) staining, p53 and $p21^{Cip1/WAF1}$ expression, and reactive oxygen species (ROS) production in proliferating IMR-90 cells. $CK2{\alpha}$ overexpression almost abolished this event. Taken together, the present results suggest that the upregulation of miR-760 and miR-186 is associated with replicative senescence in human lung fibroblast cells, and their cooperative action with miR-337-3p and miR-216b may induce replicative senescence through $CK2{\alpha}$ downregulation-dependent ROS generation.

Keywords

References

  1. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
  2. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
  3. Bayreuther, K., Rodemann, H.P., Hommel, R., Dittmann, K., Albiez, M., and Francz, P.I. (1998). Human skin fibroblasts in vitro differentiate along a terminal cell lineage. Proc. Natl. Acad. Sci. USA 85, 5112-5116.
  4. Brown, J.P., Wei, W., and Sedivy, J.M. (1997). Bypass of senescence after disruption of $p21^{CIP1/WAF1}$ gene in normal diploid human fibroblasts. Science 277, 831-834. https://doi.org/10.1126/science.277.5327.831
  5. Chen, Q.M., Bartholomew, J.C., Campisi, J., Acosta, M., Reagan, J.D., and Ames, B.N. (1998). Molecular analysis of $H_2O_2$-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem. J. 332, 43-50. https://doi.org/10.1042/bj3320043
  6. Choi, S.E., and Kemper, J.K. (2013). Regulation of SIRT1 by micro-RNAs. Mol. Cells 36, 385-392. https://doi.org/10.1007/s10059-013-0297-1
  7. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
  8. Duncan, J.S., and Litchfield, D.W. (2008). Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochim. Biophys. Acta 1784, 33-47. https://doi.org/10.1016/j.bbapap.2007.08.017
  9. Garzon, R., and Calin, G.A, (2009). Croce CM. MicroRNAs in cancer. Annu. Rev. Med. 60, 167-179. https://doi.org/10.1146/annurev.med.59.053006.104707
  10. Goldstein, S. (1990). Replicative senescence: the human fibroblast comes of age. Science 249, 1129-1133. https://doi.org/10.1126/science.2204114
  11. Jang, S.Y., Kim, S.Y., and Bae, Y.S. (2011). p53 deacetylation by SIRT1 decreases during protein kinase CK2 downregulationmediated cellular senescence. FEBS Lett. 585, 3360-3366. https://doi.org/10.1016/j.febslet.2011.09.027
  12. Jeon, S.M., Lee, S.J., Kwon, T.K., Kim, K.J., and Bae, Y.S. (2010). NADPH oxidase is involved in protein kinase CK2 downregulation-mediated senescence through elevation of the level of reactive oxygen species in human colon cancer cells. FEBS Lett. 584, 3137-3142. https://doi.org/10.1016/j.febslet.2010.05.054
  13. Jung, H.J., and, Suh, Y. (2012). MicroRNA in aging: from discovery to biology. Curr. Genomics 13, 548-557. https://doi.org/10.2174/138920212803251436
  14. Kang, J.Y., Kim, J.J., Jang, S.Y., and Bae, Y.S. (2009). The p53-$p21^{CiP1/WAF1}$ pathway is necessary for cellular senescence induced by the inhibition of protein kinase CK2 in human colon cancer cells. Mol. Cells 28, 489-494. https://doi.org/10.1007/s10059-009-0141-9
  15. Kim, V.N, Han, J., and Siomi, M.C. (2009). Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10, 126-139. https://doi.org/10.1038/nrm2632
  16. Kim, S.Y., Lee, Y.H., and Bae, Y.S. (2012). miR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting $\alpha$ subunit of protein kinase CKII in human colorectal cancer cells. Biochem. Biophys. Res. Commun. 429, 173-179. https://doi.org/10.1016/j.bbrc.2012.10.117
  17. Lee, Y.H., Yuk, H.J., Park, K.H., and Bae, Y.S. (2013). Coumestrol induces senescence through protein kinase CKII inhibitionmediated reactive oxygen species production in human breast cancer and colon cancer cells. Food Chem. 141, 381-388. https://doi.org/10.1016/j.foodchem.2013.03.053
  18. Lee, Y.H., Kang, B.S., and Bae, Y.S. (2014). Premature senescence in human breast cancer and colon cancer cells by tamoxifenmediated reactive oxygen species generation. Life Sci. 97, 116-122. https://doi.org/10.1016/j.lfs.2013.12.009
  19. Marasa, B.S., Srikantan, S., Martindale, J.L., Kim, M.M., Lee, E.K., Gorospe, M., and Abdelmohsen, K. (2010). MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging 2, 333-343. https://doi.org/10.18632/aging.100159
  20. Mavrakis, K.J., Van Der Meulen, J., Wolfe, A.L., Liu, X., Mets, E., Taghon, T., Khan, A.A., Setty, M., Rondou, P., Vandenberghe, P., et al. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat. Genet. 43, 673-678. https://doi.org/10.1038/ng.858
  21. Meek, D.W., Simon, S., Kikkawa, U., and Eckhart, W. (1990). The p53 tumour suppressor protein is phosphorylated at serine 389 by casein kinase II. EMBO J. 9, 3253-3260.
  22. Noren Hooten, N., Abdelmohsen, K., Gorospe, M., Ejiogu, N., Zonderman, A.B., and Evans, M.K. (2010). microRNA expression patterns reveal differential expression of target genes with age. PLoS One 5, e10724. https://doi.org/10.1371/journal.pone.0010724
  23. Park, J.H., Kim, J.J., and Bae, Y.S. (2013). Involvement of PI3KAKT-mTOR pathway in protein kinase CKII inhibition-mediated senescence in human colon cancer cells. Biochem. Biophys. Res. Commun. 433, 420-425. https://doi.org/10.1016/j.bbrc.2013.02.108
  24. Pichiorri, F., Suh, S.S., Rocci, A., De Luca, L., Taccioli, C., Santhanam, R., Zhou, W., Benson, D.M. Jr., Hofmainster, C., Alder, H., et al. (2010). Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367-381. https://doi.org/10.1016/j.ccr.2010.09.005
  25. Rivlin, N., Brosh, R., Oren, M., and Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2, 466-474. https://doi.org/10.1177/1947601911408889
  26. Robles, S.J., and Adami, G.R. (1998). Agents that cause DNA double strand breaks lead to $p16^{INK4a}$ enrichment and the premature senescence of normal fibroblasts. Oncogene 16, 1113-1123. https://doi.org/10.1038/sj.onc.1201862
  27. Ruzzene, M., and Pinna, L.A. (2010). Addiction to protein kinase CK2: a common denominator of diverse cancer cells? Biochim. Biophys. Acta 1804, 499-504. https://doi.org/10.1016/j.bbapap.2009.07.018
  28. Ryu, S.W., Woo, J.H., Kim, Y.H., Lee, Y.S., Park, J.W., and Bae, Y.S. (2006). Down-regulation of protein kinase CK2 is associated with cellular senescence. FEBS Lett. 580, 988-994. https://doi.org/10.1016/j.febslet.2006.01.028
  29. Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and $p16^{INK4a}$. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
  30. Zhu, J., Woods, D., McMahon, M., and Bishop, J.M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12, 2997-3007. https://doi.org/10.1101/gad.12.19.2997

Cited by

  1. Mechanisms of lung aging vol.367, pp.3, 2017, https://doi.org/10.1007/s00441-016-2511-x
  2. Regulation of Collagen V Expression and Epithelial-Mesenchymal Transition by miR-185 and miR-186 during Idiopathic Pulmonary Fibrosis vol.186, pp.9, 2016, https://doi.org/10.1016/j.ajpath.2016.04.015
  3. MiR-760 overexpression promotes proliferation in ovarian cancer by downregulation of PHLPP2 expression vol.143, pp.3, 2016, https://doi.org/10.1016/j.ygyno.2016.09.010
  4. miR-186 in Alzheimer's disease: a big hope for a small RNA? vol.137, pp.3, 2016, https://doi.org/10.1111/jnc.13573
  5. rs78378222 polymorphism in the 3′-untranslated region of TP53 contributes to development of age-associated cataracts by modifying microRNA-125b-induced apoptosis of lens epithelial cells vol.14, pp.3, 2016, https://doi.org/10.3892/mmr.2016.5465
  6. MicroRNA-125b inhibits lens epithelial cell apoptosis by targeting p53 in age-related cataract vol.1842, pp.12, 2014, https://doi.org/10.1016/j.bbadis.2014.10.002
  7. miR-15b regulates cisplatin resistance and metastasis by targeting PEBP4 in human lung adenocarcinoma cells vol.22, pp.3, 2015, https://doi.org/10.1038/cgt.2014.73
  8. Protein kinase CK2 in breast cancer: the CK2β regulatory subunit takes center stage in epithelial plasticity vol.72, pp.17, 2015, https://doi.org/10.1007/s00018-015-1929-8
  9. miRNA-216 and miRNA-499 target cyb561d2 in zebrafish in response to fipronil exposure vol.45, 2016, https://doi.org/10.1016/j.etap.2016.05.019
  10. Systematic analysis of gene expression pattern in has-miR-760 overexpressed resistance of the MCF-7 human breast cancer cell to doxorubicin vol.69, 2015, https://doi.org/10.1016/j.biopha.2014.11.028
  11. MicroRNA-186 affects the proliferation of tumor cells via yes-associated protein 1 in the occurrence and development of pancreatic cancer vol.14, pp.3, 2017, https://doi.org/10.3892/etm.2017.4770
  12. MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C vol.14, pp.4, 2017, https://doi.org/10.3892/etm.2017.4908
  13. Effect of microRNA-186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase-signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease vol.233, pp.12, 2018, https://doi.org/10.1002/jcp.26843
  14. Downregulation of protein kinase CK2 activity induces age-related biomarkers in C. elegans vol.8, pp.23, 2017, https://doi.org/10.18632/oncotarget.16939
  15. Prognostic role of miR-760 in hepatocellular carcinoma vol.16, pp.6, 2014, https://doi.org/10.3892/ol.2018.9546
  16. miR-15a: a potential diagnostic biomarker and a candidate for non-operative therapeutic modality for age-related cataract vol.76, pp.4, 2014, https://doi.org/10.1080/09674845.2019.1639337
  17. Protein Kinase CK2 in Cancer Energetics vol.10, pp.None, 2014, https://doi.org/10.3389/fonc.2020.00893
  18. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124370
  19. CK2 Down-Regulation Increases the Expression of Senescence-Associated Secretory Phenotype Factors through NF-κB Activation vol.22, pp.1, 2014, https://doi.org/10.3390/ijms22010406
  20. The Potential Role of miRNAs in Cognitive Frailty vol.13, pp.None, 2014, https://doi.org/10.3389/fnagi.2021.763110
  21. Regulation of miR-186-YY1 axis by the p53 translational isoform ∆40p53: implications in cell proliferation vol.20, pp.5, 2014, https://doi.org/10.1080/15384101.2021.1875670
  22. MicroRNA-499 serves as a sensitizer for lung cancer cells to radiotherapy by inhibition of CK2α-mediated phosphorylation of p65 vol.21, pp.None, 2014, https://doi.org/10.1016/j.omto.2021.03.016
  23. Multi-Walled Carbon Nanotubes (MWCNTs) Cause Cellular Senescence in TGF-β Stimulated Lung Epithelial Cells vol.9, pp.6, 2014, https://doi.org/10.3390/toxics9060144
  24. How can a traffic light properly work if it is always green? The paradox of CK2 signaling vol.56, pp.4, 2014, https://doi.org/10.1080/10409238.2021.1908951