DOI QR코드

DOI QR Code

벡터를 활용한 이차곡선과 사이클로이드의 접선에 대한 연구

A study on tangent of quadratic curves and cycloid curves using vectors

  • 투고 : 2014.03.28
  • 심사 : 2014.08.12
  • 발행 : 2014.08.31

초록

'Tangent' is one of the most important concepts in the middle and high school mathematics, especially in dealing with calculus. The concept of tangent in the current textbook consists of the ways which make use of discriminant or differentiation. These ways, however, do not present dynamic view points, that is, the concept of variation. In this paper, after applying 'Roberval's way of finding tangent using vectors in terms of kinematics to parabola, ellipse, circle, hyperbola, cycloid, hypocycloid and epicycloid, we will identify that this is the tangent of those curves. This trial is the educational link of mathematics and physics, and it will also suggest the appropriate example of applying vector. We will also help students to understand the tangent by connecting this method to the existing ones.

키워드

참고문헌

  1. 강향임 (2012). 수학적 모델링 과정에서 접선 개념의 재구성을 통한 미분계수의 재발명과 수학적 개념 변화, 학교수학 14(4), 409-429.(Kang, H. (2012). Students' reinvention of derivative concept through construction of tangent lines in the context of mathematical modeling, School Mathematics 14(4), 409-429.)
  2. 김남희, 나귀수, 박경미, 이경화, 정영옥, 홍진곤 (2011). 수학교육과정과 교재연구, 서울: 경문사. (Kim, N., Na, G., Park, K., Lee, K., Chung, Y. & Hong, J. (2011). Research on Mathematics Curriculum and Teaching Materials, Seoul: Kyungmoonsa.)
  3. 김영록, 이영이, 한종민 (2009). 선형 근사로서의 접선 개념의 교육학적 고찰, 수학교육 논문집 23(3), 625-642. (Kim, Y., Lee, Y. & Han, J. (2009). Pedagogical discussion on the concept of tangent as a linear approximation, Communications of Mathematical Education 23(3), 625-642.)
  4. 김은주 (2008). 제 7차 교육과정 교과서에 제시된 접선개념 분석. 석사학위논문, 경북대학교. (Kim, E. (2008). Analysis of tangent line presented in mathematics textbooks under the 7th Korean curriculum. Master's dissertation, Kyungpook National University.)
  5. 안병국, 김병학, 박윤근 (2010). Lakatos 이론과 GSP를 활용한 접선지도연구, 수학교육 논문집 24(3), 627-658. (An, B., Kim, B. & Park, Y. (2010). On effective way of teaching concept of tangent line using Lakatos theory and GSP, Communications of Mathematical Education 24(3), 627-658.)
  6. 우정호 (2007). 학교수학의 교육적 기초, 서울: 서울대학교 출판부. (Woo, J. (2007). Educational Foundation of School Mathematics, Seoul: Seoul National University Press.)
  7. 우정호, 박교식, 박경미, 이경화, 김남희, 임재훈, 박인, 지은정, 신보미, 최인선 (2009). 중학교 수학 1, 서울:(주)두산동아. (Woo, J., Park, K., Park, K., Lee, K., Kim, N., Yim, J., Park, I., Ji, E., Shin, B., Choi, I. (2009), Middle School Mathematics 1, Seoul: Doo San Dong-A.)
  8. 임재훈, 박교식 (2004). 학교 수학에서 접선 개념 교수방안 연구, 수학교육학연구 14(2), 171-185. (Yim, J., Park, K. (2004). Teaching and learning concepts of tangent in school mathematics, The Journal of Educational Research in Mathematics 14(2), 171-185.)
  9. 정영우, 이목화, 김부윤 (2012). 근사개념 지도를 위한 관련 지식의 교수학적 고찰, 수학교육 논문집 26(1), 137-154. (Chung, Y., Lee, M. & Kim, B. (2012). A study in the pedagogical consideration of the related knowledge for teaching 'Approximation' conception, Communications of Mathematical Education 26(1), 137-154.)
  10. 조영미 (1999). 접선 개념의 교육적 연구, 수학교육학연구 9(1), 229-237. (Cho, Y. (1999). On the educational study on tangents of curves, The Journal of Educational Research in Mathematics 9(1), 229-237.)
  11. 황선욱, 강병개, 김수영 (2009). 고등학교 수학, 서울: (주)좋은책신사고. (Hwang, S., Kang, B., Kim, S. (2009), High School Mathematics, Seoul: Truebook Sinsago.)
  12. 황선욱, 강병개, 허민, 최수창, 신동윤, 장경성, 김수영, 한용익, 황세호, 김창일, 정상일, 이문호, 박진호 (2010). 고등학교 기하와 벡터, 서울: (주)좋은책신사고. (Hwang, S., Kang, B., Her, M., Choi, S., Shin, D., Chang, K., Kim, S., Han, Y., Hwang, S., Kim, C., Chung, S., Lee, M., Park, J. (2010), High School Geometry and Vectors, Seoul: Truebook Sinsago.)
  13. Tall, D. (1987). Constructing the concept image of a tangent. Proceedings of PME 11, Montreal, 3, 69-75.
  14. Euclid (1998). 기하학 원론(바) (이무현 역), 서울: 교우사. (Euclid (1998). Euclid's Elements, Seoul: Kyowoosa.)
  15. The Inter-IREM Commission (1997). History of Mathematics Histories of Problems, Paris: Ellipses.
  16. 小平邦彦(1999). 수학이 살아야 나라가 산다 (김성숙, 김형보 역), 서울: 경문사. (원저 1986년 출판) (Kodaira Kunihiko (1986). Symbol of mathematician lazy, Tokyo: Iwanamishoten. (translated into Korean by Kim Sung Sook and Kim Hyung Bo at Seoul: Kyungmoonsa, 1999))