DOI QR코드

DOI QR Code

Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgy Ti-6Al-4V Alloy

티타늄 합금 분말 소결체의 고온 변형 거동 및 미세조직 연구

  • Received : 2014.06.20
  • Accepted : 2014.07.25
  • Published : 2014.08.28

Abstract

The effects of processing parameters on the flow behavior and microstructures were investigated in hot compression of powder metallurgy (P/M) Ti-6Al-4V alloy. The alloy was fabricated by a blended elemental (B/E) approach and it exhibited lamellar ${\alpha}+{\beta}$ microstructure. The hot compression tests were performed in the range of temperature $800-1000^{\circ}C$ with $50^{\circ}C$ intervals, strain rate $10^{-4}-10s^{-1}$, and strain up to 0.5. At $800-950^{\circ}C$, continuous flow softening after a peak stress was observed with strain rates lower than $0.1s^{-1}$. At strain rates higher than $1s^{-1}$, rapid drop in flow stress with strain hardening or broad oscillations was recorded. The processing map of P/M Ti-6Al-4V was designed based on the compression test and revealed the peak efficiency at $850^{\circ}C$ and $0.001s^{-1}$. As the processing temperature increased, the volume fraction of ${\beta}$ phase was increased. In addition, below $950^{\circ}C$, the globularization of phase at the slower strain rate and kinking microstructures were found. Based on these data, the preferred working condition of the alloy may be in the range of $850-950^{\circ}C$ and strain rate of $0.001-0.01s^{-1}$.

Keywords

References

  1. F. McBagonluri and W. O. Soboyejo: Advanced Structural Materials, W. O. Soboyejo and T. S. Srivatsan (Ed.), CRC Press, Boca Raton (2007) 359.
  2. F. H. Froes: Adv. Mat. Proc., 10 (2012) 26.
  3. D. M. Bowden and W. H. Peter: Final Technical Report, Near-net Shape Fabrication Using Low-Cost Titanium Alloy Powders, Oak Ridge National Laboratory, U.S.A (2012) 5.
  4. F. H. Froes and D. Eylon: Int. Mat. Rev., 35 (1990) 162. https://doi.org/10.1179/095066090790323984
  5. F. H. Froes, S. J. Mashl, V. S. Moxson, J. C. Hebeisen and V. A. Duz: JOM, 11 (2004) 46.
  6. H. Miura: J. Kor. Powd. Met. Inst., 20 (2013) 323. https://doi.org/10.4150/KPMI.2013.20.5.323
  7. W. H. Peter, C. Yu and S. S. Borys: Proc. 13th Diesel Engineefficiency and Emissions Research Conference (2007).
  8. T. R. Muth and R. Meyer: Technical Report, Production of Diesel Engine Turbocharger Turbine for Low Cost Titanium Powder (2012).
  9. K. Imahashi, C. Tsumuki and I. Nagare: SAE Technical Paper 841221 (1984).
  10. Z. Zhang: M. S. Thesis, Simulation of Titanium and Titanium Alloy Powder Compact Forging, The University of Waikato, Hamilton (2011) 1.
  11. J. W. Qiu, Y. Liu, Y. B. Liu, B. Liu, B. Wang, E. Ryba and H. P. Tang: Mat. Design, 33 (2012) 213. https://doi.org/10.1016/j.matdes.2011.07.034
  12. R. E. Peebles: ARML Technical Report AFML-TR-71- 148, Titanium Powder Metallurgy Forging (1971).
  13. Y. V. R. K. Prasad and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM International (1997).
  14. S. H. Chang, Y. Kim and K.-C. Park: J. Kor. Powd. Met. Inst., 19 (2012) 134 (Korean). https://doi.org/10.4150/KPMI.2012.19.2.134
  15. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier and Y. V. R. K. Prasad: Mat. Sci. Eng., A284 (2000) 184.
  16. T. Seshacharyulu, S. C. Medeiros, W. G. Frazier and Y. V. R. K. Prasad: Mat. Sci. Eng., A325 (2002) 112.
  17. S. L. Semiatin, V. Seetharaman, I. Weiss: Mat. Sci. Eng., A263 (1999) 257.
  18. A. B. Li, L. J. Huang, Q. Y. Meng, L. Geng and X. P. Cui: Mater. Des., 30 (2009) 1625. https://doi.org/10.1016/j.matdes.2008.07.031
  19. H. Ziegler: Progress in Solid Mechanics, Wiley, New York (1963) 93.